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In two recent reviews (Geary 2018; Geary 2019), Geary attributed a substantial role in 
generating individual differences in the general factor of intelligence, g, to mitochondrial 
functioning. While understanding the appeal of reducing a complex psychological phenomenon to 
an elementary biological cause and providing a new lease to Spearman’s theory of g as mental 
energy, we find the evidence supporting the theory to be rough-and-ready, indirect, or even 
contradictory. In particular, the theory lacks specificity in describing the causal path from 
mitochondria to g in two respects: (1) it would imply that genetic effects on g would exert their effect 
on mitochondria, which is at odds with current genetic evidence; (2) if g reflects variation in 
mitochondrial functioning and thus differences in g loadings necessarily indicate differences in the 
extent to which performance on a test depends on mitochondrial functioning, then the theory fails to 
account for why the effect of mitochondrial functioning on performance is greater in tests that have 
higher across-domain correlations. 

First, the theory is contradicted by genetic studies of g. Cognitive ability is strongly heritable: 
based on quantitative genetic studies, in childhood around 50%, and in adulthood up to 80% of 
individual differences in cognitive ability or IQ scores can be ascribed to genetic differences (Plomin 
and Deary 2015; Polderman et al. 2015). Most studies use simple sum scores or first unrotated 
principal components of multiple cognitive tests as the dependent variable in quantitative genetic 
studies. However, when cognitive ability is decomposed to its hierarchical factor structure, g usually 
turns out to be even more heritable, while in less general abilities, genetic factors play a 
progressively weaker and environmental variables a progressively stronger role (Shikishima et al. 
2009; Panizzon et al. 2014). 

Quantitative genetic studies remain agnostic about the nature of the genetic determinants of a 
trait. However, recent large-scale genome-wide association studies (GWASs) revealed a large 
number of single nucleotide polymorphisms (SNPs) associated with cognitive ability (Lam et al. 
2017; Savage et al. 2017; Trampush et al. 2017; Zabaneh et al. 2017; Davies et al. 2018; Hill et al. 2018). 
Even larger studies investigating the genetic correlates of educational attainment (Rietveld et al. 
2013; Okbay et al. 2016; Lee et al. 2018) also found genetic variants which predicted cognitive ability. 
GWAS-derived polygenic scores currently predict up to 10% of cognitive performance (Lee et al. 
2018; Allegrini et al. 2019). Within-family studies indicate that this effect size may be inflated due to 
population stratification, but a substantial proportion is still retained (Selzam et al. 2019). The 
functional interpretation of these genetic variants is not simple, because (1) many SNP hits are in 
intergenic regions with an unknown function, and (2) SNP hits are not necessarily causal for g; it is 
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very likely that they are merely in linkage disequilibrium with truly functional variants in 
neighboring genomic regions. Still, multiple attempts have been made to at least approximately 
interpret the biological function of g-associated SNPs. These studies have unequivocally shown that 
g-associated genetic variants are primarily expressed in the brain, in specific brain regions and 
specific cell types, and they are implicated in very specific cellular functions, none of which concern 
mitochondria (Lam et al. 2017; Sniekers et al. 2017; Davies et al. 2018; Hill et al. 2018; Lee et al. 2018; 
Savage et al. 2018; Coleman et al. 2019). These findings are summarized in Table 1. 

Table 1. Selected studies about the biological function of g-associated genetic variants. The last three 
columns highlight the organs, organ regions (typically brain regions) and cell types in which the 
genes mapped to g-associated single nucleotide polymorphisms (SNPs) were significantly enriched. 
We note that most of these studies used genetic data from multiple overlapping cohorts, hence 
cannot be considered independent. 

Study Data Source N Organ Region Cell Type or Function 

Lam et al. 
2017 

Multiple cohorts also 
used in the Sniekers 
et al. 2017; Trampush 
et al. 2017; Okbay et 
al. 2016 GWASs. 

107,207 
Brain, 
pituitary 

Cerebellar hemisphere, 
cerebellum, frontal cortex, 
cortex, anterior cingulate, 
nucleus accumbens, caudate 
nucleus, hypothalamus, 
hippocampus, putamen, 
amygdala 

Neuron, neuron projection, 
neurogenesis, synapses, 
dendrites, synapse 
organization 

Savage et 
al. 2018 

UK Biobank, 
COGENT consortium 
and 12 other sources 

269,867 Brain 

Amygdala, anterior cingulate 
cortex, caudate nucleus, 
cerebellar hemisphere, 
cerebellum, cortex, frontal 
cortex, hippocampus, 
hypothalamus, nucleus 
accumbens, putamen 

Medium spiny neuron, 
pyramidal (somatosensory, 
hippocampal CA1) 

Davies et 
al. 2018 

CHARGE and 
COGENT consortia, 
UK Biobank 

300,486 
Brain, 
pituitary 

Cerebellum, cerebellar 
hemisphere, cortex, frontal 
cortex, hippocampus, nucleus 
accumbens, hypothalamus, 
amygdala, caudate nucleus, 
putamen, substantia nigra, 
pituitary 

Neurogenesis, regulation of 
nervous system development, 
neuron projection, nervous 
system development, neuron 
differentiation, regulation of 
cell development, dendrites 

Hill et al. 
2018 

Meta-analysis of the 
Sniekers et al. 2017; 
Okbay et al. 2016 
GWASs, UK Biobank 

248,482 
Brain, 
pituitary 

Cerebellar hemisphere, 
cerebellum, frontal cortex, 
cortex, anterior cingulate, 
nucleus accumbens, 
hippocampus, amygdala, 
hypothalamus, caudate 
nucleus, putamen, substantia 
nigra 

Neurogenesis, nervous system 
development, cell 
development, neuron 
projection, CNS neuron 
differentiation, synapse, 
neuron differentiation, 
oligodendrocyte 
differentiation 

Coleman 
et al. 2019 

Meta-analysis of the 
Zabaneh et al. 2017; 
Sniekers et al. 2017 
GWASs 

87,740 
Brain, 
pituitary 

Frontal cortex 

Pyramidal (somatosensory, 
hippocampal CA1), medium 
spiny neuron, embryonic 
GABAergic neuron, 
serotonergic neuron 

The current evidence suggests that the known genetic variants associated with individual 
differences in g affect specific areas of the brain, more specifically the frontal and anterior cingulate 
cortex, the cerebellum and certain subcortical structures. They seem to be expressed in specific cell 
types, and their functional role seems to be concentrated in neurogenesis, neuronal development 
and synaptic functions. This is in accordance with the watershed model that proposes that the causal 
effect of genotypes on intelligence as an observed phenotype is exerted through intermediate 
endophenotypes (Kievit et al. 2016). 

In our view, these results are incompatible with individual differences in mitochondrial 
functioning playing a major role in creating individual differences in g. Mitochondria are present in 
all cells in all human tissues. If differences in mitochondrial function were to underlie individual 
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differences in g, then g-associated genetic variants would not be expressed in specific tissues and cell 
types only. This would especially be the case if—as the hypothesis put forward by Geary (Geary 
2018; Geary 2019) suggests—the correlation between g and physical health (Calvin et al. 2011; Deary 
et al. 2019) exists because the same differences in mitochondrial functioning that create higher g in 
the central nervous system result in better physical health and greater longevity through their effects 
in other tissues. In our view, the functional role of g-associated SNPs is more consistent with the 
hypothesis that a large number of diverse, minor tissue- and cell-specific differences in the nervous 
system underlie g. 

Second, since reflective latent variable models require a realistic ontology (Borsboom et al. 
2003), if g in fact represents mitochondrial functioning, then in reflective models, g loadings must 
represent the extent of mitochondrial involvement. Since the general factor is a simple algebraic 
consequence of the positive manifold (Krijnen 2004), “it is always important to remember that it is 
the positive manifold, not g as such, that needs explanation” (Mackintosh 2011, p. 165). Therefore, 
translating g loadings in terms of the positive manifold itself, this means that the tests that correlate 
most strongly with other tests that have different content are the ones in which variation in 
performance depends most on mitochondrial functioning—according to Geary’s theory. 

Hence, the theory should provide hypotheses regarding why such differences between g 
loadings in different tests depend on the relative involvement of mitochondrial function or energy. 
For instance, it is generally found that the more complex a task, the higher its g loading. However, 
complexity is not identical to difficulty. There are a number of manipulations that are able to 
increase g loadings, and the theory should be able to account for these. Why is mitochondrial 
functioning more relevant for backward digit span than for forward digit span? For odd-one-out 
reaction time than for simple reaction time? 

Additionally, the factor Gf is found to be identical or near-identical to g (Gustafsson 1984; Kan 
et al. 2011), pointing to the centrality of fluid/inductive reasoning in g. Why does an inductive 
reasoning task, such as the completion of a number series or an incomplete matrix, require much 
more energy than a difficult short term memory task or a speed test, which requires one to work as 
fast as one can? 

Even if the ultimate cause of differences in g loadings is mitochondrial functioning, a proximate 
psychological or physiological mechanism is needed that mediates this effect. Simply presuming 
that the stronger g loading is the result of such tasks’ higher “energy requirement”, without further 
explanation, would be tautological. If mitochondrial energy is more important for certain tasks and 
specific ability factors that are also most strongly related to g, then it should be explained why that is 
the case. 

For the above reasons, our view is that individual differences in mitochondrial functioning 
probably do not underlie individual differences in g. The quest for the equivalent of psychological g, 
the common cause for the covariance in the performance on diverse cognitive tests, is still ongoing. 
In the meantime, theories and models that actually explain such covariance without assuming a 
common cause in the first place (Kovacs and Conway 2016; Savi et al. 2019; van der Maas et al. 2006) 
should probably also be considered. 
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