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A B S T R A C T

The relative importance of domain-general and domain-specific sources of variance in working memory capacity
(WMC) is a matter of debate. In intelligence research, the question of domain-generality is informed by dif-
ferentiation: the phenomenon that the size of across-domain correlations is inversely related to ability: the lower
the ability, the more domain-general the variance. Since WMC and intelligence are related constructs, differ-
entiation might exist in WMC, too. Differentiation in WMC is also predicted by process overlap theory, a recent
model of intelligence. We used moderated factor analysis to test for differentiation. The results demonstrate the
existence of differentiation in WMC: as capacity increases, variance in WMC becomes more domain-specific.
Fluid reasoning (Gf) also contributes to differentiation in WMC: when Gf is lower, WMC variance is more do-
main-general. There was no significant moderation by crystallized (Gc) and spatial (Gv) ability and Gf only
moderated differentiation in WMC but not in short-term memory.

Introduction

Working memory is a psychological construct used to characterize
and help further investigate how humans maintain access to goal-re-
levant information in the face of concurrent processing and/or dis-
traction (Baddeley, 1992). According to its first conception working
memory is characterized as a multi-component system which includes
domain-specific verbal and spatial “slave” storage systems, as well as a
domain-general central executive responsible for attention control
(Baddeley & Hitch, 1974).

Even though the model of working memory was initially developed
to account for intra-individual phenomena, interest soon arose in
measuring individual differences in the capacity of this system. One of
the first measures of the capacity of working memory was the reading
span task (Daneman & Carpenter, 1980), which requires subjects to
read sentences aloud and remember the last word of each sentence for
later recall. Another early example is the counting span task (Case,
Kurland, & Goldberg, 1982) in which subjects are instructed to count a
particular class of items and, after counting aloud, remember and later
recall the totals. There are also spatial working memory tasks, such as
letter rotation task (Shah & Miyake, 1996) and symmetry span (Kane
et al., 2004).

Several of these “complex span tasks” have now been developed to
measure working memory capacity (for a review, see Conway et al.,

2005). These tasks are thought to be valid measures of working memory
capacity because they require access to information in the face of
concurrent processing. In contrast, simple memory span tasks (e.g.,
digit span, word span, letter span), which do not include an interleaved
processing task between the presentations of to-be remembered items,
are thought to be less ecologically valid measures of working memory
capacity (Baddeley & Hitch, 1974; Daneman & Carpenter, 1980;
Dempster, 1981).

Besides such progress in measurement, substantial theoretical de-
velopments have been made and alternative models have been created
since the publication of the original Baddeley and Hitch model (e.g.
Cowan, 1999; Oberauer, Süß, Wilhelm, & Wittman, 2003). Virtually all
current models of working memory include domain-specific and do-
main-general processes and in the working memory literature there is
considerable debate about their relative importance. In particular, the
domain-generality of variation in working memory capacity remains a
controversial issue.

One of the most important findings from studies investigating
complex and simple span tasks is that variation in complex span is more
domain-general than in simple span; across domain correlations are
larger in complex than in simple span tasks (Turner & Engle, 1989).
This implies that working memory capacity is determined to a larger
extent by domain-general processes, relative to domain-specific pro-
cesses, than short-term memory capacity. Yet the domain-generality of
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WMC is controversial: although there are larger cross-domain correla-
tions in complex span, other evidence appears supportive of a domain-
specific view of individual differences. For instance, Shah and Miyake
(1996) found that verbal and spatial working memory predicts verbal
and spatial ability better, respectively, arguing for a domain-specific
view of individual differences.

Since working memory tasks require parallel storage and proces-
sing, observed correlations with other variables may reflect variation in
either the storage or the processing components of working memory
tasks, or both. Latent variable studies of individual differences in
working memory capacity are useful because they are able to decom-
pose storage components (variance common to short-term memory
tasks and working memory tasks) from processing components (var-
iance unique to working memory tasks). Kane and colleagues (Kane
et al., 2004) applied exactly this method in a latent variable analysis;
they decomposed the storage components of complex span tasks and
found that while storage processes indeed appear to be more domain-
specific, the processes that complex span tasks tap beyond the pure
storage and retrieval of information appear to be largely domain-gen-
eral.

Latent variable studies of working memory have provided addi-
tional important results. First, they identified a general factor of
working memory, which is generally referred to as “working memory
capacity” or WMC (Conway, Cowan, Bunting, Therriault, & Minkoff,
2002; Conway, Kane, & Engle, 2003; Engle, Tuholski, Laughlin, &
Conway, 1999). This is the result of all-positive correlations between
different working memory tasks. This finding is similar to one of the
main findings in the study of intelligence, called the positive manifold:
cognitive ability tests with diverse content, ranging from reading
comprehension to number series to mental rotation, all correlate posi-
tively. This finding is the basis of the general factor of intelligence, g,
which explains 40–50% of the variance in cognitive ability tests. The
general factor of WMC is similar to the general factor of intelligence
since it accounts for the positive correlations between working memory
tasks with different content.

There is evidence that the general factor of WMC reflects individual
differences in the executive component of working memory, particu-
larly executive attention and cognitive control (Engle & Kane, 2004;
Engle et al., 1999; Kane & Engle, 2002; Kane, Bleckley, Conway, &
Engle, 2001). Also, latent variable studies employing both intelligence
tests and working memory tasks revealed that WMC is strongly related
to intelligence. Two studies, conducted by different groups of re-
searchers, estimate the median correlation between WMC and non-
verbal fluid reasoning (Gf) to be somewhere between r= .72 (Kane,
Hambrick, & Conway, 2005) and r= .85 (Oberauer, Schulze, Wilhelm,
& Süss, 2005). Thus, according to these analyses, WMC accounts for
between half and two-thirds of the variance in Gf. This is substantially
higher than the proportion of variance in g, the general factor of in-
telligence, that is explained by WMC (Ackerman, Beier, & Boyle, 2005).

That is, WMC is more strongly related to the fluid factor of in-
telligence than to other factors. This is, once again, demonstrably
caused by the processing, not the storage component of working
memory tasks; when latent variable studies decompose what complex
span tasks require beyond storage and retrieval they find that such
processing components correlate to a much smaller extent with tests of
crystallized intelligence (Gc) or processing speed (Gs) than with fluid
reasoning (Gf) (Conway & Kovacs, 2013).

Finally, when one compares complex and simple span in terms of
how well they predict fluid intellience (Gf), complex span tasks turn out
to be stronger predictors (Conway et al., 2002; Engle et al., 1999; Kane
et al., 2004, but see Colom, Shih, Flores-Mendoza, & Quiroga, 2006;
Unsworth & Engle, 2007). Taken together, these studies demonstrate
that: (1) it is the processing component of working memory tasks,
mostly reflecting executive processes, that drives the WMC-intelligence
relationship, and (2) it is the fluid component of intelligence that cor-
relates most strongly with WMC.

The factorial analysis of intelligence test results is also able to
identify a general factor (g), as well as specific factors, and in the in-
telligence literature there has also been a long-standing debate about
domain-generality vs. specificity, and in particular whether g can be
identified as a general mental ability permeating all human cognition
(Conway & Kovacs, 2013). This debate has been influenced by research
on ability differentiation: the phenomenon that across-domain correla-
tions are higher in low ability groups (Blum & Holling, in press; Juan-
Espinosa, Cuevas, Escorial, & García, 2006; Kane, Oakland, & Brand,
2006). Importantly, differentiation is not simply the result of the re-
striction of range: in high ability groups the correlation between dif-
ferent tests is lower than in low ability groups with equally restricted
range (Blum & Holling, 2017). Differentiation, then, means that uni-
dimensionality of variance is more applicable in low ability groups than
in high ability groups. Thus the question of domain-specificity in in-
telligence is not independent of the level of intelligence of the sample in
question.

A recent theoretical account of human intelligence, process overlap
theory (Kovacs & Conway, 2016a, 2016b), provides an explanation of
the positive manifold in intelligence. The theory postulates an overlap
of cognitive processes activated by various mental ability tests and
working memory tasks. In particular, it is hypothesized that any item or
task requires a number of domain-specific as well as domain-general
cognitive processes. Domain-general processes responsible for execu-
tive attention and cognitive control are central to performance on
mental tests as well as working memory tasks since they are activated
by a large number of items, alongside with domain-specific processes
tapped by specific types of items/tests only.

Process overlap theory draws heavily on the concept of working
memory capacity in explaining the positive manifold in intelligence. In
fact, it provides an explanation of both positive manifolds, the one in
intelligence and the one in working memory. The positive correlations
between diverse working memory tasks on the one hand and diverse
ability tests on the other are both caused by domain-specific processes
overlapping with a set of domain-general executive processes that are
tapped by a large number of ability tests and working memory tasks.
Since the general factors are statistical accounts of the positive mani-
folds, process overlap theory provides an explanation of the general
factor of WMC as well as g. Moreover, since it proposes that the same
pool of domain-general executive processes is tapped by different
working memory tasks as different psychometric tests of cognitive
ability (especially the ones that measure fluid reasoning), the theory
also explains why the general factors of working memory and (fluid)
intelligence correlate so strongly.

The theory actually focuses on limitations in its account of the po-
sitive manifold. That is, the central processes that are tapped by a large
numbers of tasks limit performance in a general way and make errors
more likely regardless of the domain-specific processes that are also
tapped by the same tasks. This way executive processes function as a
bottleneck and can potentially mask individual differences in more
specific abilities. This is, according to the theory, the explanation of
ability differentiation: it occurs because the lower the ability on central
executive processes the lower the probability of correctly solving cog-
nitive tasks, regardless of the level of ability on domain-specific pro-
cesses.

Differentiation means that the lower the ability of a population, the
higher the average correlations between tests; therefore differentiation
can also be described as the general factor, g, accounting for more
variance at lower levels of ability, whereas in high ability samples more
variance is accounted for by domain-specific ability factors.

According to process overlap theory, the same “executive bottleneck
effect” that is described above operates in working memory, too.
Therefore, it a clear prediction of the theory that differentiation has to
manifest itself in WMC as well. This is because the worse the perfor-
mance of executive processes the more it is likely that executive pro-
cesses will be the source of error, hence the larger section of the total
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variance they will account for, relative to specific processes. This pre-
diction is practically agnostic with regard to most actual models of
working memory as long as they propose both domain-specific and
domain-general sources of variance.

The current study focuses on three specific predictions regarding
differentiation in WMC that follow from process overlap theory:

(1) Ability differentiation occurs in tasks measuring WMC.
(2) Since executive functions are strongly related to fluid reasoning

(Gf), to a much larger extent than to verbal and spatial ability, Gc
and Gv, respectively (Conway & Kovacs, 2013; Conway,
Macnamara, Getz, & Engel de Abreu, 2011; Unsworth & Engle,
2006), differentiation in WMC is moderated by Gf, but not, or to a
much smaller extent by Gc or Gv.

(3) Since executive processes are tapped by complex span tasks to a
much larger extent than by simple span tasks (Engle & Kane, 2004;
Unsworth & Engle, 2007), differentiation occurs in working
memory, but not to or to a much smaller extent in short term
memory.

In the current study we investigated these three predictions.
Specifically, in Study 1 we tested prediction 1 using the non-linear
differentiation methodology by Tucker-Drob (2009) and Molenaar,
Dolan, and Verhelst (2010). Next, in Study 2, we tested predictions 2
and 3 using the moderation methodology of Bauer and Hussong (2009).

Study 1: Differentiation in working memory capacity (WMC)

Method

In the first study we analyzed data from a large-scale study
(N=5316) of three complex span tasks: Operation Span, Reading Span,
and Symmetry Span (Redick et al., 2012).1 As discussed above, complex
span tasks operationalize the central aspect of the concept of working
memory: parallel storage and processing. In contrast to simple span
tasks, such as digit span or word span, which only require storage and
retrieval, in complex span there is additional processing, which dis-
tracts from the stimuli to remember. For instance in this version of the
Operation span task, which is a complex version of letter span, the
presentation of letters is interrupted by easy equations, and subjects
have to decide whether each equation is correct. Importantly, the three
tasks in this study tap different cognitive domains and, as such, their
intercorrelations represent across-domain variance.

In intelligence, if ability differentiation occurs then observed in-
telligence subtasks are more strongly correlated for participants lower
on the underlying latent dimension (which represents g in this case) as
compared to participants higher on the underlying latent dimension.
Various methods have been proposed to test this prediction.
Researchers have relied on the creation of two or more subgroups that
differ on ability. These groups are subsequently compared in terms of
their inter-test correlations or factor structure. Commonly these groups
have been created by a median split on an observed test score (Deary
et al., 1996; Detterman & Daniel, 1989; Jensen, 2003) or on factor
scores (Carlstedt, 2001; Reynolds & Keith, 2007) or by using existing
groups that are assumed to differ on the underlying dimension (te
Nijenhuis & Hartmann, 2006). As discussed by Tucker-Drob (2009) and
Molenaar, Dolan, Wicherts, and van der Maas (2010) these methods are
suboptimal to test for differentiation as (1) splitting observed scores
may distort the factor structure in the subsamples; (2) the cut-off and
the number of subgroups that are formed are arbitrary decisions that
may affect the power to detect a differentiation effect; and (3) the
comparison of existing groups may be confounded by other differences
between the groups.

Tucker-Drob (2009) and Molenaar, Dolan, and Verhelst (2010) de-
rived an explicit statistical test on differentiation that does not require
subgroups. We will use this approach here. The main rational behind
the approach is that if subtask correlations are decreasing for increasing
levels of a given latent dimension (i.e., general intelligence in the case
of ability differentiation, and working memory in the present study),
this will be evident in the factor loadings of the subtasks on the latent
dimension. That is, the factor loadings will also decrease for increasing
levels of the latent dimension. In Fig. 1 this is illustrated. In the figure,
the linear factor loadings from a conventional factor analysis (solid grey
lines) are decreased across the latent dimension for 3 increasing ex-
ample levels (levels A, B, and C). That is, at level A, the conventional
factor loading is relatively large (i.e. a steep line), for level B, the factor
loading is smaller, and for level C the factor loading is relatively small.

As can be seen, the resulting factor loading (solid black line) is non-
linear. That is, differentiation of working memory (i.e., the question
whether the inter-working memory task correlations are decreasing for
increasing levels of the latent working memory dimension) can be in-
vestigated by testing whether the factor loadings of the working
memory tasks are non-linear. Specifically, in applying the method
above to our data, we obtain a non-linearity parameter. If this para-
meter is larger than 0, the working memory task correlations are in-
creasing across the latent working memory dimension, and if the non-
linearity parameter is smaller than 0, the working memory task corre-
lations are decreasing across the latent working memory dimension.
Thus, in the full model, we investigated differentiation by testing
whether the non-linearity parameter is smaller than 0 for all tasks.
Technical details of this method are described in Appendix A.

Results

We first fitted the baseline model to the data (Fig. 2). We identified
the model by fixing the variance of the working memory factor to equal
one. Note that the baseline model is saturated as it only has three in-
dicators, therefore the model fit is perfect. Next we estimated the non-
linearity parameters, which are informative about the extent to which
the latent score, i.e. WMC, moderates the factor loadings of the manifest
variables, i.e. the complex span tasks.2 Negative values indicate dif-
ferentiation in the predicted direction, i.e. smaller correlations for
higher levels of working memory.

Table 1 contains the parameter estimates of the non-linearity
parameters.3 It can be seen that all estimates are negative and sig-
nificant (at least p < .05), as predicted. The non-linearity parameters
in Table 1 tune the curvature of the factor loadings across the latent
WMC score. See Fig. 3 for a graphical representation of the implied
factor loadings. As can be seen from the figure, Symmetry span has the
largest curvature, followed by Operation span. Reading span has the
smallest curvature. These graphical results are in line with the para-
meter estimates in Table 1, where Symmetry span has the largest ab-
solute parameter estimate, followed by Operation span, and Reading
span respectively.

As all non-linearity parameters differ from 0, question arises whe-
ther the effects differ across subtests. To this end, we fitted an extra
series of models in which we sequentially equated two non-linearity
parameters to see how model fit was affect in terms of the AIC, BIC, and
sample size adjusted BIC fit indices. See Table 2. As can be seen from
the table, the model with all effects estimated freely fits best (i.e., this
model has the lowest AIC, BIC, and sample size adjusted BIC) indicating
that all effects differ significantly from one another. Note that for the

1 Please cf. the original reference for details of the sample and the tasks.

2 As is described in Appendix A, besides non-linear factor loadings, the model
includes heteroscedastic residuals to account for subtest specific effects related
to scaling.

3 As Mx does not output standard errors by default, the standard errors were
based on 100 bootstrap samples.
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models with two non-linearity parameters fixed to be equal, the fit
indices correlate negatively with the effect sizes in Table 1 (and Fig. 3).
That is, the larger the differences between the two non-linearity para-
meters (i.e., the larger the difference in curvature), the larger the AIC,
BIC, and sample size adjusted BIC indicating that the non-linearity
parameters are not equal.

Overall, these results clearly demonstrate the existence of differ-
entiation in WMC: the higher it is, the less variance explained in all of
the tasks. The effect is relatively stronger in Operation span and rela-
tively weaker in Reading span.

Study 2: Differentiation of WMC and STM as the function of fluid,
crystallized, and visuospatial intelligence

Method

In the second study we analyzed data from a study on the domain-
specificity of WMC (N=249), applying a large number of working
memory and short-term memory tasks as well as cognitive ability tests
(Kane et al., 2004). There were short-term memory, working memory,
and reasoning tasks that belonged either to the spatial or verbal do-
main, and, additionally, three tests of fluid intelligence were adminis-
tered. Table 3 lists the memory tasks and the psychometric tests that
were used in the study.4

In this second study, we investigated differentiation in working
memory and short-term memory across fluid (Gf), crystallized (Gc), and
visuospatial intelligence (Gv). Similarly as in Study 1, a possible pro-
cedure would be to perform a median split on a Gf measure and test
whether the correlations among a set of working memory tasks are
smaller for participants high on Gf as compared to participants low on
Gf. This could be subsequently done for a Gc and Gv measure. Such an
approach suffers from similar shortcomings as the ones discussed for
Study 1 (Molenaar, Dolan, Wicherts, et al. (2010); Tucker-Drob, 2009).
We therefore adopted a more statistically explicit model: the method of
moderated factor analysis (Bauer & Hussong, 2009).

That is, to investigate whether the latent working memory and the
latent short-term memory dimensions are differentiated across Gf, Gc,
and Gv, we test whether the factor loadings differ across Gf, Gc and Gv.
The rational of moderated factor analysis is illustrated in Fig. 4 for a

Fig. 1. Example of decreasing subtask factor loadings (solid grey lines) for 3
increasing levels on the latent dimension (dashed grey lines: levels A, B, and C).
The resulting factor loading (solid black line) is non-linear.

Fig. 2. The baseline model for study 1, consisting of a single factor of WMC
reflected by three complex span tasks.

Table 1
Parameter estimates, Standard Errors (SE), and Z-values for the non-linearity
parameters.

Task (i) Estimate SE Z p

Operation span −0.068 0.009 −7.566 < .001
Symmetry span −0.149 0.018 −8.278 < .001
Reading span −0.017 0.007 −2.433 0.016

Fig. 3. Graphical representation of how the factor loadings vary as a function of
the underlying working memory dimension for the three tasks in Study 1.
Vertical lines represent (bootstrapped) 95% confidence intervals.

Table 2
Fit indices for 4 different models testing the equality of the non-linearity
parameters across working memory tasks.

Model AIC BIC sBIC

All unequal 8634 −48031 −22745
OS and SS equal 8643 −48030 −22742
OS and RS equal 8644 −48030 −22742
SS and RS equal 8665 −48019 −22731
All equal 8667 −48021 −22732

Note. OS: Operation span; SS: Symmetry span; RS: Reading span. sBIC: sample
size adjusted BIC. In addition, yhe best values of the fit indices are in bold face.

4 Please cf. the original reference for details of the sample, tasks, and tests.
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one factor model and a single moderator variable5. In the figure, the
factor model from a conventional factor analysis is depicted for 3 in-
creasing example levels on a moderator variable (levels A, B, and C). In
general, this moderator variable can be any observed variable (e.g., age
or SES).

In Fig. 4a, the factor loadings are unmoderated, that is, the factor
loadings do not differ across the moderator. In Fig. 4b, the factor
loadings are moderated, that is, they are differing across the moderator
variable. Specifically, at level A, the factor loading is relatively large
(represented by ticker arrows), for level B, the factor loading is smaller,
and for level C the factor loading is relatively small. Thus, the factor
loadings are decreasing across the moderator variable. In applying the

moderated factor model above to data, one obtains a moderation
parameter for each subtask. If this parameter is 0, the corresponding
subtask is unmoderated. If the moderation parameter is larger than 0,
the task correlations (and factor loading) are increasing across the
moderator dimension for that task, and if the moderation parameter is
smaller than 0, the task correlations are decreasing across the moderator
variable: this latter case would indicate differentiation.

In this study our point of departure will be a second-order factor
model as there are three verbal and three spatial tasks both for short-
term memory and working memory (see Table 3). There is a number of
different models applied in the study of individual differences in
memory capacity, including hierarchical as well as bi-factor models
(Conway & Kovacs, 2013). In this study we decided to use the hier-
archical model for methodological, not substantive considerations,
since there is no appropriate method applicable for bi-factor models.

We thus have two first-order factors (each measured by 3 tasks) and
one second-order factor both for short-term memory (see Figs. 5 and 6
for the baseline models). To identify the model, we equated the two
second-order factor loadings, fixed the variance of the second–order
factors to unity, and the mean of the first-order factors to zero in both
the short-term memory and working memory model. Note that, as we

equated the two first-order factor loadings, we only have one second-
order factor loading to be estimated.6

Subsequently, we investigated differentiation of working memory
and short term memory by fluid (Gf) crystallized (Gc), and visuospatial
ability (Gv) by testing for moderation of the second-order factor loading
by Gf, Gc, and Gv. The ability scores were calculated as composite
scores of the corresponding ability tests. We tested for the moderating
effects of all moderators (Gf, Gc, and Gv) simultaenoulsy to account for
correlations between the moderators. In addition, we considered
working memory and short-term memory separately. We expected that
differentiation occurs for Gf but not or to a lesser extent for Gc and Gv.
For short-term memory, we hypothesized that either there would be no

Table 3
Spatial and verbal short-term and working memory tasks, and spatial, verbal,
and fluid reasoning tests used in study 2. Rows indicate domains, columns in-
dicate the type of task or test.

Short-term
memory

Working memory Reasoning

Verbal 1. Word span 1. Reading span 1. ETS Inference Test
2. Letter span 2. Operation span 2. AFOQT Analogies Test
3. Digit span 3. Counting span 3. AFOQT Reading

Comprehension
4. Remote Associates Test
5. ETS Nonsense Syllogisms
Test

Spatial 1. Ball span 1. Symmetry span 1. DAT Space Relations Test
2. Arrow span 2. Navigation span 2. AFOQT Rotated Blocks Test
3. Matrix span 3. Rotation span 3. ETS Surface Development

Test
4. ETS Form Board Test
5. ETS Paper Folding Test

Fluid 1. Raven’s Progressive Matrices
2. WASI Matrix Reasoning
3. Beta III Matrix Reasoning

Fig. 4. The one-factor model depicted at 3 increasing example levels on a moderator variable (levels A, B, C) in the case of unmoderated factor loadings (a) and
moderated factor loadings (b).

5 In the actual analysis we use multiple moderators and a second-order factor
model as will be explained later.

6 While the unstandardized loadings are thus equal, the standardized loadings
may still be different.
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Fig. 5. Higher-order baseline model for working memory in study 2.

Fig. 6. Higher-order baseline model for short-term memory in study 2.
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differentiation for either of the external moderators, or the effects
would be substantially smaller.

Results

We first fitted the baseline models without moderation to see
whether they fit well to the data.7 It appeared that the fit was accep-
table for both the working memory tasks (RMSEA: 0.067, CFI: 0.990,
TLI: 0.981) and the short-term memory tasks (RMSEA=0.029,
CFI= 0.998, TLI= 0.996). We proceeded by fitting the moderation
model to the working memory tasks and the short-term memory tasks
separately.

Tables 4 and 5 contain the parameter estimates of the moderation
parameters for both working memory and short-term memory, respec-
tively.8

For WMC, as hypothesized, the moderation of the second-order
loading for Gf is significant at p < .05 and less than zero, while for Gc,
and Gv the moderation parameters are non-significant. In the case of
short-term memory, all moderation parameters of the second-order
loadings are non-significant for Gf, for Gc, and for Gv. See Fig. 7 for a
graphical representation of how the second-order factor loadings differ
across Gf for WMC and STM.

Discussion

The results demonstrate the existence of ability differentiation in
WMC. Results obtained in the first study provide evidence for internal
moderation: loadings of three complex span measures on a domain-
general WMC factor are inversely related to general WMC capacity it-
self. The higher the level of WMC, the more domain-specific the var-
iance in complex span tasks.

The second study demonstrates external moderation by fluid rea-
soning (Gf). That is, loadings on the domain-general WMC factor are
inversely related to fluid reasoning: as Gf increases, correlations be-
tween WMC tasks decrease. Importantly, this phenomenon does not
occur in short-term memory as measured by simple span tasks. Also, the
external moderation of crystallized (Gc) and spatial (Gv) intelligence
was not significant for WMC either.

These results are in agreement with the predictions of process
overlap theory, according to which the capacity of one’s working
memory is jointly determined by the capacity of (1) the domain-general
executive system, and (2) the capacity of the corresponding domain-
specific system. The core idea of process overlap theory is that when the
capacity limitations of the domain-general executive system are severe,
overall capacity will be limited to a large extent, regardless of the ca-
pacity limit of the slave systems. Therefore executive processes function
as a bottleneck for overall performance; when the level of executive
processes is low then these processes are likely to be the source of errors
in overall performance, regardless of the limits of domain-specific sto-
rage. But if the executive system does not impose substantial limita-
tions, the capacity limits of the independent, domain-specific slave
systems have a larger role in determining overall capacity limits.
Therefore, differentiation occurs: the size of across-domain correlations
will be related to overall capacity.

Moreover, according to the results of the studies presented in this
paper, differentiation is limited to WMC as opposed to short-term

memory span. This is also explained by process overlap theory. Since
complex span requires additional processing as well as the coordination
of storage and processing, the executive involvement is substantially
larger. Therefore, capacity limits will be determined to a larger extent
by executive processes than in short-term memory tests, where per-
formance mostly reflects domain-specific storage. This, according to
process overlap theory, casues differentiation to manifest itself more
strongly in WMC, where executive processes are relatively more im-
portant than short-term storage, than is short-term memory tasks,
where performance is determined by pure storage and retrieval.

Finally, we found that fluid reasoning (Gf), but not visuospatial
ability (Gv) or or perceptual speed (Gs) moderate the factor loadings.
Once again, this is explained by, and was predicted by, the theoretical
propositions of process overlap theory. Since, as discussed in the
Introduction, executive processes are much more involved in fluid
reasoning than in other components of intelligence, the moderating
effect should be stronger by Gf than by any other factor.

From a more general perspective the finding that differentiation
exists means, at least from an individual differences perspective, that
research on the structure of working memory should be informed by
overall capacity levels. At different levels of capacity different compo-
nents might have a more dominant role in determining capacity itself.

In the following points we summarize the general implications our
findings have for models and theories of working memory capacity:

(1) Our results imply that WMC is not a unitary ability; rather, it is a
combination of domain-general and domain-specific abilities. Our
results are more compatible with the multi-component model
(Baddeley & Hitch, 1974; Baddeley, 1992) than models that pro-
pose that WMC is determined almost exclusively by executive at-
tention and assume that attention as a unitary resource fuels both
storage and processing, such as Engle’s controlled attention theory
(Engle, 2002; Engle, 2018) or Cowan’s embedded process model
(Cowan et al., 2005; Cowan, 1999). The existence of differentiation
demonstrates that WMC is determined by different sources and the
relative weight of each source in determining overall WMC is dif-
ferent at different capacity levels.

(2) There is no universal value of the domain-generality of WMC unless
the sample studied actually covers the entire range of capacity in
the population. That is, studying samples differing in ability will
provide different answers to the question whether verbal WMC is
equivalent to spatial WMC (see e.g. Kane et al., 2004). This might
mean that WMC researchers seeking an ultimate answer to the
domain-specificity of variation in WMC might have to turn to re-
presentative samples, which is challenging and, even so, it will have
to be noted that different correlation structures hold for different
levels of ability.

Table 4
WMC: Parameter estimates and Standard Errors (SE) for the moderation para-
meters (bold is significant at p < 0.05).

Moderator Estimate SE Z p

Gf −0.198 0.089 −2.225 .026
Gc 0.034 0.085 0.400 .690
Gv 0.102 0.088 1.159 .246

Table 5
Short Term Memory: Parameter estimates and Standard Errors (SE) for the
moderation parameters.

Moderator Estimate SE Z p

Gf 0.065 0.135 0.481 .630
Gc −0.133 0.120 −1.108 .268
Gv −0.033 0.136 −0.243 .808

7 In Study 1 we did not test this explicitly as we only had three tasks. The
traditional factor model is thus saturated in that case and the fit will always be
perfect. As in Study 2 we have six tasks, question arises whether the one-factor
model fits the data to begin with.

8 These are the analytical standard errors as outputted by Mplus. In addition,
as can be seen in Appendix B, besides the moderation of the second-order factor
loadings, the model includes moderation of the residuals to account for subtest
specific effects.
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(3) Differentiation in WMC is in accordance with the assumption pro-
posed by process overlap theory that different, domain-specific
WMC tasks (e.g. spatial, verbal) tap a number of processes in an
overlapping fashion and domain-general executive processes have a
larger role in determining overall capacity in (1) WMC tasks as
compared to STM tasks, (2) in individuals with lower capacity.

(4) The fact that we have found ability differentiation in complex span
but not simple span is inconsistent with views that equate short-
term memory with working memory as the same construct (e.g.
Colom et al., 2006). Instead, it supports the theoretical distinction
between simple and complex span tasks (Conway & Kovacs, 2013;
Engle et al., 1999).

Conclusions

This is the first set of studies to demonstrate the existence of dif-
ferentiation in WMC. These results inform the debate about the domain-
generality of WMC, which appears to be influenced by capacity itself: in
higher ability samples it is more likely for correlational and latent
variable studies to find domain-specific variance and thus identify se-
parate domain-specific components. In contrast, in lower ability sam-
ples a larger portion of the variance will be across-domains.

If the relative contribution of psychological sub-processes to overall
WMC is not universal and such limits indeed reflect different

mechanisms in different people then identifying the within-individual
processes responsible for WMC might be more challenging than pre-
viously thought. In fact, it is quite possible that a substantial bulk of the
controversy regarding the domain-specificity of WMC is the con-
sequence of sample selection. Researchers should be cautious not only
when dealing with samples with restricted range in general, but also
with samples consisting solely of college students in particular.
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Appendix A. Testing for non-linearity of the working memory factor loadings in study 1

In the traditional factor model, the observed task scores of participant p on task i (ypi) are regressed on the underlying working memory
dimension (ηp) resulting in an intercept (νi), a factor loading (λi) and a residual (εpi), that is,

= + +y ν λ η εpi i i p pi (A.1)

where COR(εpi, ηp)= 0 and VAR(εpi) is denoted by σεi2. In addition, VAR(ηp)= 1 for identification purposes. It follows from (1) that the correlation
between tasks i and task j depend on λi and σεi2: As differentiation predicts lower correlations between ypi for higher levels of η, (Tucker-Drob, 2009)
and Molenaar, Dolan, and Verhelst (2010) proposed to test for differentiation by investigating whether λi varies systematically over the levels of ηp.
This can be done by making λi to depend on η, that is

= +λ η λ λ η( ) exp( )i p i i p0 1 (A.2)

Here, parameter λ0i is the baseline factor loading, that is, it accounts for the size of the factor loading at ηp=0. In addition, λ1i is the non-linearity
parameter, that is, it accounts for the amount by which the factor loadings increase or decrease across η.9 Note that as advocated by Molenaar, Dolan,
and Verhelst (2010), we use an exponential function as we expected all factor loadings to be positive. If λ1i is smaller than 0, factor loadings are
decreasing for increasing levels of η. Thus, an explicit test on differentiation is the test whether λ1i is significantly smaller than 0.

As discussed by Tucker-Drob (2009), tests on differentiation (i.e., tests on the hypothesis that λ1i is smaller than 0) may be affected by the
measurement properties of the task scores ypi. That is, the task scores in ypi are commonly sum scores of individual items. If a task consists of a

Fig. 7. Graphical representation of how the second-
order factor loadings vary as a function of the un-
derlying second-order factor which represents
WMC and STM. Note that this graph only involves
the moderation parameter of Gf as only this para-
meter was significant for WMC (but not for STM).
Vertical lines represent (bootstrapped) 95% con-
fidence intervals.

9 More specifically, λ0i equals to log(λi) for ηp=0, and λ1i models the linear increase or decrease of log(λi) across ηp.
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disproportional number of easy items, an artificial differentiation effect may arise in the data. That is, there may be more information about
individual differences at the lower range of η (due to the more easy items) and less information at the upper range of η (due to less difficult items).
This difference in the amount of information makes the factor loadings to appear smaller for the respondents high on η. Molenaar, Dolan, and
Verhelst (2010) proposed a method to account for these biasing effects (see Tucker-Drob, 2009 for an alternative approach). That is, by allowing the
residual variances (σεi2) to differ systematically across η (heteroscedasticity) in a similar way as the factor loadings, the systematic biasing effects of
the measurement scale can be absorbed. Thus, they proposed

= +σ η β β η( ) exp( )εi p i i p
2

0 1 (A.3)

In this equation, β01 is a baseline parameter, that is, it accounts for the value of σ εi
2 for η=0. In addition, β1i is the so-called heteroscedasticity

parameter, that is, it accounts for the amount by which σ εi
2 increases or decreases across η.10 Note that an exponential function [exp(.)] is used to

prevent negative variances. While investigating differentiation by testing for moderation in the factor loadings, we accounted for heteroscedastic
residuals to absorb possible measurement effects. Models were fitted in the Mx software package (Neale, Boker, Xie, & Maes, 2002) using the scripts
by Molenaar, Dolan, and Verhelst (2010).

Appendix B. Moderated factor analysis in study 2

In this study we used hierarchical models for both STM and WMC. Therefore, the first-order level we get the following factor models:

= + + −y ν λ η ε , for task 1 3pi i i p pi1 (B.1)

= + + −y ν λ η ε , for task 4 6pi i i p pi2 (B.2)

and at the second-order level we have:

= +η γζ ωp p p1 1 (B.3)

= +η γζ ωp p p2 2 (B.4)

where γ is the second-order loading (which is equal for the two first-order factors), ζp is the second-order factor (which represents WMC or STM) and
ωpi is the first-order residual variance. Note that there is no intercept in the second-order model as we fixed this to zero. We are now interested in
testing whether the second-order factor loadings differ across Gf, Gc and Gv, we make γ a function of these variables, that is

= + + +γ ζ γ γ Gf γ Gc γ Gv( ) exp( )p p p p0 1 2 3 (B.5)

Parameter γ0 is the baseline parameter modeling the size of γ for Gfp=Gcp=Gvp= 0. Parameters γ1, γ2, and γ3 model respectively the increase/
decrease of γ across Gf, Gc, and Gv.11 We refer to these parameters as moderation parameters. The Gf, Gc, and Gv variables are observed measures of
these dimensions. Since we hypothesized that differentiation occurs for Gf but not or to a lesser extent for Gc and Gv, we expected γ1 to be
significantly smaller than 0, and γ2 and γ3 to be either not significantly different from 0 or at least substantially less different from 0 than γ1 for the
working memory data. For the short term memory data, we expect either none of them to be significant or at least substantially less different from 0
than γ1 in the working memory model.

As we test for moderation between WMC (ζp) on the one side and Gf, Gc, and Gv on the other side, we need to include the main effects of Gf, Gc,
and Gv in the first-order model (see Nelder, 1994). We do this by allowing for moderation of the intercept parameters (νi) in Equation (1), that is, at
the first-order level (see Molenaar, Dolan, Wicherts, et al., 2010), that is,

= + + +ν η ν ν Gf ν Gc ν Gv( )i p i i p i p i p0 1 1 1 (B.6)

where ν0i is the general intercept parameter and ν1i, ν2i, and ν3i are the main effects of Gf, Gc, and Gv respectively. Note that we are not interested in
these effects, but we need to partial them out of the task scores (ypi) to enable a test on moderation (Molenaar, Dolan, Wicherts, et al., 2010).

To finalize the model, we add moderation of the residual variances, for similar reasons as in Study 1. That is, we want to account for possible
differences in the measurement properties of the tasks (ypi) across the Gf, Gc, and Gv measures because such differences may bias our tests on
differentiation as discussed above. Thus, we add

= + + +σ η β β Gf β Gc β Gv( ) exp( )εi p i i p i p i p
2

0 1 1 1 (B.7)

where β0i is the baseline parameter, and β1i, β2i, and β3i are moderation parameters. Models are fit in Mplus (Muthén & Muthén, 2007). The scripts
are available upon request.

Appendix C. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jml.2019.104048.
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