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ABSTRACT
The most replicated result in the field of intelligence is the positive manifold, which refers to an all-positive
pattern of correlations among diverse cognitive tests. The positive manifold is typically described by a
general factor, or g. In turn, g is often identified as general intelligence, yet this explanation is contradicted
by a number of results. Here we offer a new account of g: process overlap theory. According to the theory,
cognitive tests tap domain-general executive processes, identified primarily in research on working
memory, as well as more domain-specific processes. Executive processes are tapped in an overlapping
manner across cognitive tests such that they are required more often than domain-specific ones. The
theory provides an account of a number of findings on human intelligence. As well, it is formalized as a
multidimensional item response model and as a structural model, and the neural mechanisms underlying
the proposed overlapping processes are discussed.
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g: A Well-Aged Puzzle

Why do people differ in their cognitive abilities? Is there a gen-
eral intelligence that permeates all human intellectual activity?
Or is it more reasonable to postulate specific kinds of talent?
After more than a century of research, these questions are still
unresolved, and the nature and origin of individual differences
in mental abilities remain open to debate.

The most compelling result in this field of study is that peo-
ple who perform above average on one kind of cognitive test
(e.g., vocabulary) tend to perform above average on other kinds
of cognitive tests as well (e.g., mental rotation). This pattern of
positive correlations was first observed more than a century
ago (Spearman, 1904) and is often referred to as the positive
manifold. Indeed, because mental testing of large samples
became common practice, for example, in military and aca-
demic contexts, literally hundreds of studies have revealed the
positive manifold (Carroll, 1993), making it perhaps the most
replicated result in all of psychology.

With the development of factor analysis, a statistical tech-
nique that aims to reduce the number of dimensions in large
correlation matrices, the empirical observation of the positive
correlations among diverse cognitive tests was accounted for by
a general factor of intelligence, or g. Factor analysis is consid-
ered a data-reduction technique because a relatively small num-
ber of factors, or latent variables, identify common sources of
variance across tests, which are referred to as manifest varia-
bles. In other words, the correlation between two manifest vari-
ables can be explained by their connection to a common latent
variable. For example, a vocabulary test and a mental rotation

test are correlated because they both correlate with the same
latent variable “X.”

The first factorial model of intelligence (Spearman, 1904)
proposed that a single latent variable, g, accounts for all of the
positive correlations between measures of mental ability (see
Figure 1). The variance in a test not attributable to g was there-
fore explained by a test specific factor, s.1 According to this ini-
tial theory, the specific factors were orthogonal, each a
reflection of unique test content and, necessarily, measurement
error. Spearman’s idea of a latent causal variable, g, as the
underlying reason for the correlations among different cogni-
tive tasks, developed contemporaneously with factor analysis
itself.

A general factor is indeed reliably obtained when mental test
data are submitted to exploratory factor analysis. Yet the test
variance that the general factor could not account for turned
out not to be entirely test specific, and some groups of tests, for
example, vocabulary and reading comprehension, correlate
more strongly with one another than with other groups of tests,
for example, mental rotation and spatial navigation. Hence
Spearman’s view of intelligence was quickly met with criticism
and alternative accounts were proposed; the strongest compet-
ing model consisted of multiple uncorrelated group factors,
representing a set of “Primary Mental Abilities” (Thurstone,
1938; see Figure 2). However, Thurstone’s original model was
challenged in a similar fashion as he challenged Spearman; the
idea of orthogonal factors turned out to be untenable, and their
correlations needed to be accounted for by a higher order
general factor.
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The decades that followed the work of Spearman and Thur-
stone witnessed numerous studies of individual differences in
cognitive ability as well as the development of confirmatory fac-
tor analysis (CFA). Contrary to exploratory factor analysis,
CFA is a statistical procedure that enables hypothesis testing;
one can specify a model of cognitive abilities and test whether
observed data corroborate what one would expect based on
predictions of the model. These further studies with more
advanced methods gravitate toward latent variable models of
intelligence that incorporate both a general factor and more
specific group factors.

This has been accomplished in two ways: bifactor models
and hierarchical models (see Figures 3 and 4). In bifactor mod-
els, tests correlate directly with g as well as with specific factors,
whereas in hierarchical models no test loads directly on g.
Instead, in hierarchical models domain-general variance is
manifested in the correlations between group factors and is
ultimately accounted for by the general factor, g, at the top
level. Thus, contrary to Spearman’s original conception “hierar-
chical g” explains correlations among abilities rather than cor-
relations among tests. It arguably does a good job indeed; g
usually accounts for about 40% (Deary, Penke, & Johnson,
2010) or 50% (Jensen, 1998) of the total variance measured in
diverse sets of mental tests administered to sufficiently large
samples.

Of course, instead of having uncorrelated first- or second-
order factors and a general factor on top of the hierarchy, one
could always have correlated first- or second-order factors in
the model and no g (see Figure 5). Because the higher-order
factor model is a nested/constrained version of the oblique
first-order factor model, the latter is also usually applicable to
describe the positive manifold. But the superficial impression is
that the non-g model leaves the correlations unexplained,
whereas g-models do explain them. Or do they?

The problem with g is simply that still to this day there is no
satisfactory consensus about how to interpret it: If there is a
casual factor behind g, it has not been identified yet. Moreover,
it is not only the case that there is controversy about what g is;
there is substantial confusion about what kind of thing g, or
indeed what any latent variable, is in the first place (Borsboom,
Mellenbergh, & van Heerden, 2003; Conway & Kovacs, 2013).

Here we propose a novel solution to this well-aged puzzle,
which we refer to as process overlap theory. The primary aim
of process overlap theory is to explain the positive manifold,
yet the theory also provides a comprehensive account of estab-
lished findings on individual differences in intelligence. It is
important that process overlap theory explains interindividual
differences in behavior in terms of intraindividual psychologi-
cal processes and neural mechanisms. There have been other
approaches, discussed later on, that question the latent cause
interpretation of the positive manifold and have offered alter-
natives. However, in our view, process overlap theory is unique
in the sense that it integrates psychometrics, cognitive psychol-
ogy, and neuroscience.

Such an ambitious integrative approach requires a solid the-
oretical foundation, which we describe in detail next. To pre-
view, here we consider three axioms, or fundamental premises
of the theory:

1. g is a necessary consequence of the positive manifold;
whenever there are only positive entries in a correlation
matrix, it is always possible to extract a single general
factor via factor analysis, and this factor will correlate
positively with all of the manifest variables or, in the case
of hierarchical models, with all of the first- or second-
order factors. Of importance, this is not an empirical
finding but a mathematical necessity, of which there

Figure 1. A model depicting Spearman’s original conception of a single general
factor.

Figure 2. A model depicting Thurstone’s original (but later revised) conception of
orthogonal group factors.

Figure 3. A bifactor model of cognitive abilities.

Figure 4. A hierarchical model of cognitive abilities.
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exists adequate algebraic proof (Krijnen, 2004). That is,
in a technical sense, g is no more, no less, than a reflec-
tion of the positive manifold. Hence, “it is always impor-
tant to remember that it is the positive manifold, not g as
such, that needs explanation” (Mackintosh, 2011b,
p. 165).

2. An ontological stance of entity realism is required if one
is to seriously evaluate the theoretical status of latent var-
iables2 (Borsboom et al., 2003). Theorizing about a latent
variable must transcend the world of mathematical
abstractions and pinpoint a real entity, which plays a
causal role in the correlations among manifest variable—
regardless of whether this entity is a process, a set of pro-
cesses, or some common property/characteristic of
processes.

3. Latent variables are differential constructs that do not
directly translate to within-individual processes or mech-
anisms (P. C. M. Molenaar & Campbell, 2009; Voelkle,
Brose, Schmiedek, & Lindenberger, 2014). Also, latent
variables exist because of individual differences, and
without variation in mental abilities there would be no
latent variables—the last survivor of a meteor collision
with Earth would still have cognitive abilities and mental
limitations but would not have g. Naturally, this stems
from the fact that the positive manifold, being a correla-
tion matrix with only positive entries, is itself a between-
individual phenomenon. Hence the scope of any expla-
nation of the positive manifold, including but not
restricted to latent variables, is not necessarily directly
applicable to single individuals.

The structure of the article is as follows. First we discuss the
relation between within-individual processes and sources of
between-individual variance and provide a critique of the inter-
pretation of g as a within-individual construct. A few important
characteristics of the general factor that any theory of the posi-
tive manifold should probably take into account are surveyed
next. The following two sections discuss working memory, first
as a within-individual construct and then as a latent variable
that is strongly related to variation in fluid reasoning. The rea-
son for discussing working memory is detail is that there is a
positive manifold and a general factor obtained in such tasks as
well; not only is it strongly related to the positive manifold in

intelligence but it is quite likely that there is a similar explana-
tion of these two positive manifolds.

This is followed by a discussion of goal neglect and prefron-
tal function, and how they are related to both working memory
and fluid reasoning, highlighting the importance of cognitive
processes in fluid intelligence that we believe to be crucial in
causing the positive manifold. Having surveyed a large bulk of
empirical evidence that function as the grounds of our theoreti-
cal framework, we turn to outlining process overlap theory as
both a cognitive and a structural model of human intelligence,
accompanied by a mathematical (psychometric) model. The
next section covers studies that employed a network approach
to brain functioning; such studies highlight a functional overlap
of neural circuitry that corresponds to the overlap of psycho-
logical processes hypothesized by our theory. This is followed
by a comparison of our theory with previous attempts to
explain the positive manifold without a single underlying causal
dimension, and we close the article with a few concluding
remarks.

The gWithin?

A parsimonious interpretation of the general factor, based
solely on the statistical evidence, is that it represents a single,
general ability (“general intelligence” or “general cognitive abil-
ity”) that manifests itself in all kinds of different tests. However,
this is not the only possible explanation of the positive mani-
fold. Thomson (1916) demonstrated that a general factor could
appear as the result of a large number of independent, uncorre-
lated psychological processes, “sampled” by a battery of tests.
Thomson’s “sampling theory” proposed that every mental test
randomly taps a number of “bonds” from a shared pool of neu-
ral resources, and the correlation between any two tests is the
direct function of the extent of overlap between the bonds, or
processes, sampled by different tests.

Because its original formation, there have been statistical
elaborations and extensions of the sampling model
(Bartholomew, Allerhand, & Deary, 2013; Bartholomew, Deary,
& Lawn, 2009; Maxwell, 1972; McFarland, 2012) as well as sub-
stantial ones, claiming that the overlap takes place at the genetic
(Anderson, 2001) or neural (Hampshire, Highfield, Parkin, &
Owen, 2012; Rabaglia, Marcus, & Lane, 2011) level. A develop-
mental account based on mutually beneficial interactions has
been proposed that also provides a mathematical explanation
of the positive manifold without assuming the causal action of
a single general factor (van der Maas et al., 2006). Crucially,
with regard to the distinction between sampling models and g-
models, it has been mathematically demonstrated that “there is
no statistical means of distinguishing between the two” (Bar-
tholomew et al., 2009; see also Maxwell, 1972). The conclusion
from these studies is that general intelligence, a single common
cause of the positive correlations between mental tests, is surely
a sufficient, but definitely not a necessary explanation of the
positive manifold.

A crucial thing to notice is that the concept of general intelli-
gence interprets g as a within-individual mental ability, the
involvement of which, in all kinds of cognitive activity, is caus-
ally responsible for the positive manifold. Therefore, if the con-
cept of general intelligence is correct, then the following

Figure 5. An oblique model of cognitive abilities.

2More precisely: to evaluate the theoretical status of reflective latent variables, see
“Process Overlap Theory.”
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statement is valid: “John used his general intelligence to cor-
rectly answer items on both the vocabulary test and the mental
rotation test.” This, however, is substantially different from the
statement: “If John performs better on the vocabulary test than
most people, it is likely that he will perform better on the men-
tal rotation test as well,” because the latter statement leaves the
possibility open that John in fact did not use the same general
cognitive ability to solve items in the vocabulary test and the
mental rotation test, respectively. Nevertheless, the statistical
evidence based on between-subject data validates only the sec-
ond statement, not the first. To validate the first statement, one
has to review other kinds of evidence, and the result is far from
convincing.

First, there is a substantial amount of neuropsychological
evidence contradicting the idea that people use the same
general cognitive ability to perform tests with different con-
tent. Damage to different areas of the brain results in the
double dissociation of various cognitive abilities. In particu-
lar, spatial and verbal abilities can be dissociated this way, as
well as fluid reasoning from crystallized abilities (Duncan,
Burgess, & Emslie, 1995). Similarly, specific developmental
disorders result in impaired spatial abilities, whereas certain
verbal skills remain intact, or vice versa (e.g., Vicari, Bellucci,
& Carlesimo, 2007; Wang & Bellugi, 1994). This provides
strong evidence against the explanation of the positive mani-
fold by a general cognitive ability operating within individu-
als. For if John excels in both vocabulary and mental
rotation because he uses the same single general ability for
both, it would not be possible for his performance to deterio-
rate on only one of these tests following damage to specific
areas of his brain. Similarly, there is ample evidence for the
dissociation of verbal and spatial tests as a result of various
experimental manipulations; such results are also incompati-
ble with the notion that both tap a single general ability
(Jonides et al., 1996).

Sex differences can also be a means toward fractionating
human intelligence (Mackintosh, 2008); a large number of
studies indicate that on average, male and female individuals
have somewhat different cognitive profiles, with female partici-
pants outperforming male participants in most verbal tests, as
well as tests measuring perceptual speed, whereas male partici-
pants excel in three-dimensional spatial skills.

Finally, the Flynn-effect, which refers to the secular increase
in IQ across generations, also contradicts the within-individual
notion of general intelligence. In tests requiring fluid inductive
reasoning (see “Understanding g: Characteristic Features,” par-
ticularly “Figure 1: g and Gf Are Very Strongly Correlated”),
such as Raven’s Progressive Matrices, the gains per generation
have been as high as 15 IQ points, whereas in tests measuring
crystallized abilities, such as vocabulary and mental arithmetic,
the gains have been negligible; 2–3 IQ points over half a cen-
tury (Flynn, 2007).

To be fair, g-theories of intelligence could account for all
these phenomena by assuming that all fractionation and dis-
sociation occurs only in lower order specific abilities.
Because sex differences appear in specific abilities, that argu-
ment does indeed seem valid. Similarly, claims have been
made that the Flynn-effect is independent of g (e.g., Rushton,
1999), even though this conclusion is controversial (see

Flynn, 1998). However, the neuropsychological evidence is
harder to dismiss; it appears as if there is simply no place in
the brain for general intelligence (see “Overlapping Networks
in the Brain” for details). Also, taken together, these con-
verging lines of evidence point to the elusive nature of gen-
eral intelligence. With all different lines of fractionating
evidence taken into account, there is hardly any space left
for a general cognitive ability that permeates all human
cognition.

It is also important to point out that not all g-theorists
equate the general factor with a general ability. Actually, one of
the leading g-theorists, Arthur Jensen, opposed such an inter-
pretation: “It is important to understand that g is not a mental
or cognitive process or one of the operating principles of the
mind, such as perception, learning, or memory” (Jensen, 1998,
p. 94–95.). More generally, our emphasis on g being a differen-
tial construct is in perfect agreement with his theorizing about
the general factor: “A simple distinction between process and
factor is that a process could be discovered by observing one
person, whereas a factor could be discovered only by observing
a number of persons” (Jensen, 1998, p. 95; see also Jensen,
2000).

So how does Jensen, and other g-theorists, interpret g
other than a general cognitive ability? They hypothesize that
it is a common parameter that influences all of the specific
abilities or modules. For instance, Jensen proposed that g
reflects individual differences in the speed of mental opera-
tions, whereas Eysenck emphasized the role of the efficiency
of neural transmission (e.g., Eysenck, 1998). There is indeed
valuable contemporary research exploring the link between
such phenomena and the general factor; for instance, white
matter tract integrity appears to be a promising candidate
for such a parameter (Penke et al., 2012). However, even this
explains only 10% of the variance in the general factor. Speed
and efficiency, even though they surely have explanatory
power, only explain a portion of the across-domain variance
in mental tests.

Moreover, there are other problems with the theory of men-
tal speed: Among others, attention seems to be responsible for
much of the speed–IQ relationship (e.g., Conway, Kane, &
Engle, 1999), and it is also most pronounced on psychometric
tests of perceptual speed (e.g., Mackintosh & Bennett, 2002). It
is not the aim of this article to do justice on the mental speed
hypothesis of g, so we stop here by saying that this line of expla-
nation has not been sufficient, and we kindly refer the inter-
ested reader to Chapter 3 of Mackintosh’s (2011b) textbook for
an extansive elaboration on why not

Not a within-individual general cognitive ability, and proba-
bly much more than mental speed, the general factor of intelli-
gence remains an unsolved puzzle, and so does the positive
manifold. Although several candidates have been offered, there
is still no consensual explanation of why there are substantial
correlations between cognitive tests that appear to measure
very different things.

From a cognitive perspective, the puzzle itself can be sum-
marized as follows: Why does the variation between people in
test performance appear massively domain-general if the abili-
ties they employ to solve such tests are largely domain-specific?
To answer this question, we provide a cognitive account of
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item response processes and a corresponding structural
model, which are compatible with current research in cogni-
tive psychology and neuroscience as well as with a century
of research on the structure of individual differences in
intelligence.

Understanding g: Characteristic Features

The positive manifold and, consequently, the general factor
of intelligence have a number of important characteristics,
which process overlap theory attempts to explain. We list four
such features of g:

Feature 1: g and Gf Are Very Strongly Correlated

The first feature to consider is g’s relationship with various
group factors, or specific abilities. To fully understand this fea-
ture, a brief review of the fluid/crystallized (Gf/Gc) model of
intelligence (Cattell, 1971; Horn, 1994) is warranted.3 The
main idea of the model is the distinction between the ability to
solve problems in novel situations, regardless of previously
acquired knowledge (fluid intelligence or Gf), and the ability to
solve problems using already acquired skills or knowledge
(crystallized intelligence or Gc). The model includes other
group factors as well, the most important of which are Gv
(visual-spatial), Gs (speed), and Gr (retrieval from memory). A
more recent development is the Cattell–Horn–Carroll (CHC)
model (McGrew, 2009), which merges the fluid/crystallized
model with Carroll’s three-stratum hierarchical model with one
crucial difference: the original conception of Gf/Gc did not
allow a general factor, whereas CHC does.

A particular appeal of the Gf/Gc model is that the group
factors are relatively easy to interpret as within-individual
abilities, which can account for correlations at lower levels of
the hierarchy, that is, in primary abilities or the mental test
scores themselves. Gf is interpreted as fluid reasoning, a
thoroughly studied cognitive ability, the neural correlates of
which are also identified. Gc, on the other hand, mostly
translates to acquired knowledge and/or the amount of for-
mal schooling one has been exposed to (Kan, Kievit, Dolan,
& van der Maas, 2011).

Demonstrated first by Gustafsson (1984), and by numer-
ous studies since, the higher order general factor, g, is statis-
tically identical to the lower order fluid reasoning factor, Gf,
that is, g and Gf correlate perfectly. Matzke, Dolan, and
Molenaar (2010) reviewed 14 such studies, and even though
they emphasized that most of them were underpowered and
thus could not have refuted the g-Gf identity, the single
study with necessary power, as well as two only slightly
underpowered studies, equivocally found that the general

factor is identical to the fluid reasoning factor. Moreover, in
the remainder of the studies, the correlations between g and
Gf were between r D .93 and r D .99 and the fluid reasoning
factor had the strongest correlation with g, much higher
than any other group factor in the CHC model. As well, a
perfect correlation between Gf and the lower order factor
“inductive reasoning,” measured typically by matrix reason-
ing items and number series was found (Kan et al., 2011),
which means that the correlation between g and inductive
reasoning is perfect or almost perfect as well.

Feature 2: Factor Differentiation

A second important feature of the positive manifold is fac-
tor differentiation. Originally discovered by Spearman
(1927) who called it the “Law of Diminishing Returns,” fac-
tor differentiation means that g explains more variance at
lower levels of mental ability than at higher levels of ability
(e.g., Detterman & Daniel, 1989; Kane, Oakland, & Brand,
2006; Molenaar, Dolan, Wicherts, & van der Maas, 2010).
Because g reflects the strength of the positive manifold, this
result means that there are higher cross-domain correlations
in samples with lower average ability.

The same phenomenon exists across populations as well; it
was recently found that the higher a nation scores on interna-
tional standardized tests, the less the general factor explains the
variance of test scores in that nation (Coyle & Rindermann,
2013). The Flynn-effect is also related to the phenomenon of
factor differentiation; the secular gains in IQ are accompanied
by a decrease in the average correlation between scores on dif-
ferent intelligence tests and thus a decrease in the variance
explained by g (Juan-Espinosa, Cuevas, Escorial, & Garc�ıa,
2006; Kane, 2000; Kane & Oakland, 2000; Lynn & Cooper,
1993, 1994; Must, Must, & Raudik, 2003). Even though it has
been claimed that the g of intelligence is similar to the g (the
gravitational constant) in physics (Miele, 2002), factor differen-
tiation, both according to ability within a single cohort and
between different cohorts with different levels of ability, dem-
onstrates that g is far from being a constant. Instead, the
average correlation between diverse tests and thus the domain-
generality of the positive manifold varies across time and ability
level, and g is only informative of the extent of domain-general
variance in a given population at a given time.

Feature 3: Complex Tests Correlate Strongly With g

A third important feature is that more complex tests load
higher on g than less complex tests (Jensen, 1981). This implies
that g is related to the complexity of cognitive activity. An
example is backward digit span, a test in which examinees have
to recall digits in reversed order, which has a higher g loading
than forward digit span, in which digits are recalled in the origi-
nal order of presentation (Jensen, 1981, 1998).

However, “complexity” is not an explanatory construct that
can help our understanding of g, nor is it consensual, as there is
no necessary agreement between experts about how complex a
test is and how complexity differs from difficulty (Mackintosh,
1998). Moreover, there are certainly different “complexities.”
For example, in a simple continuous performance test, reaction

3We are aware that there are several important models of intelligence other than
the Gf/Gc model (e.g., Johnson & Bouchard, 2005). Yet in practically the entirety
of research on working memory and intelligence, as well as on goal neglect and
intelligence, Gf-Gc is the model that was applied, and this line of research lays
the foundations of our theory. Hence our focus on Gf/Gc is motivated by its prolif-
eration of recent cognitive research on intelligence through providing the com-
prehensive framework of “fluid reasoning,” which is readily interpretable by
cognitive psychologists. See, for instance, Blair (2006); Heitz et al. (2006); and
Kovacs, Plaisted, and Mackintosh (2006).
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time shows a moderate correlation with intelligence but making
the continuous performance test more “complex” can enhance
the magnitude of the correlation. Three different ways to
achieve this enhancement are (a) using the odd-man-out para-
digm, in which participants have to select a light that is farther
apart from two other lights; (b) showing words instead of lights,
and the word that is synonymous to a target word has to be
selected; (c) having participants perform a dual task, that is,
having them perform a simple reaction time test while informa-
tion from another test has to be remembered. Although these
versions are clearly more complex than the original, they prob-
ably invoke rather different cognitive processes.

To explain why “complexity” is related to g, we need to bet-
ter understand the nature of the cognitive processes involved in
more “complex” tests. That is, the nature of “complexity” (or
complexities) has to be conceptualized, which we attempt in
“Process Overlap Theory.”

Feature 4: The Worst Performance Rule

The final g-related phenomenon we consider here is the “worst
performance rule,” a phrase coined by Larson and Alderton
(1990) to describe the finding that worst performance predicts
g-loaded measures better than best performance. Larson and
Alderton found that the correlation between g and the slowest
reaction times was almost twice as large as the correlation
between g and the fastest reaction times in a reaction time task.
Also, the same effect was found between reaction time and
working memory, and the effect was also of the same magni-
tude. In practice, the worst performance rule means that the
difference between the fastest reaction times between high- and
low-ability groups is much smaller than the difference between
the slowest reaction times. This is consistent with the finding
that the correlation between the variability of reaction time and
g is as high as the correlation between mean reaction time and
g; moreover, the mean and variability of reaction time explain
independent parts of the g variance (Jensen, 1992).

Larson and Alderton argued that the worst performance rule
is the result of lapses in attention or working memory in people
with low cognitive ability. The phenomenon that the difference
between high- and low-ability groups is largest in the slowest
reaction times and smallest in the fastest reaction times has
been found in a number of other studies, some of which used
different reaction time tests (e.g., choice vs. simple reaction
time). The results demonstrated that the more complex a reac-
tion time test, the stronger the worst performance rule, that is,
the larger the slowest reaction times’ correlation with intelli-
gence—whereas the correlations between the fastest reaction
times and intelligence remained relatively constant (Jensen,
1982; Kranzler, 1992).

Coyle (2001) studied the worst performance rule in a word
recall test and found the same effect; the correlation between
intelligence and worst performance was significantly larger than
it was with best performance. This suggests that this phenome-
non is not restricted to reaction time measures. Of importance,
Coyle (2003a) repeated a study with an additional group from
the top 1 percentile of the intelligence distribution and found no
evidence of the worst performance rule in this high-ability
group. Also, Coyle (2003b) reviewed studies of the worst

performance rule and concluded that it is the function of the
tests’ g loading: The difference between the correlations with
best and worst performance is larger on tests that are more g
loaded.

Overall, these g-related phenomena point to four
conclusions:

1. A theory of intelligence must account for the central role
of fluid abilities in g.

2. Because the strength of g, and thus of the positive mani-
fold, is population dependent, a new theory must
account for why it is stronger in some populations and
weaker in others. In particular, it must account for the
increasing explanatory power of the general factor at
lower levels of ability.

3. Complex tests reveal strong correlations with g. A new
theory should, therefore, provide a framework that
explains test complexity without falling prey to circular
logic.

4. Indices of the worst performance on complex tests reveal
strong correlations with g. A new theory should, there-
fore, focus on the limitations of cognitive processes that
result in errors in complex cognitive activity.

Working Memory

Working memory is a construct developed by cognitive psy-
chologists to refer to the processes that enable one to hold goal-
relevant information in mind, even in the face of concurrent
processing and/or distraction. The construct was introduced in
a seminal chapter by Baddeley and Hitch (1974). Prior to their
work, the dominant theoretical construct used to explain
“immediate” memory performance was the short-term store
(STS), epitomized by the so-called modal model of memory
popular in the late 1960s (Atkinson & Shiffrin, 1968). Accord-
ing to these models, the STS plays a central role in cognitive
behavior, essentially serving as a gateway to further information
processing.

However, the concept of STS could not account for a num-
ber of within-individual phenomena, demonstrated by experi-
mental and neuropsychological studies. Baddeley and Hitch
therefore proposed the construct “working memory” that could
maintain information in a readily accessible state, consistent
with the STS, but could also engage in concurrent processing,
as well as maintain access to more information than the limited
capacity STS could purportedly maintain. According to this
perspective, a small amount of information can be maintained
via two domain-specific “slave” storage systems, verbal and spa-
tial, but more information can be processed and accessed via a
domain-general central executive (and according to later mod-
els, an episodic buffer; see Baddeley, 2000).

Even though the model of working memory was developed
to account for intra-individual phenomena, interest soon arose
in measuring individual differences in the capacity of this sys-
tem and, as it happens, such research has greatly furthered our
understanding of the limitations of human cognition. It is
important to clarify the distinction between working memory
and the capacity of working memory. Working memory refers
to a complex cognitive system including mechanisms involved
in stimulus representation, maintenance, manipulation, and
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retrieval, whereas the capacity of working memory refers to the
maximum amount of information an individual can maintain
in their working memory.

One of the first tests of the capacity of working memory was
the reading span test (Daneman & Carpenter, 1980). The test
requires subjects to read sentences aloud and remember the
last word of each sentence for later recall, thus heavily taxing
both the storage and the central executive component of work-
ing memory, contrary to memory tasks requiring only storage
and retrieval. The number of sentences/words per list varies,
typically from two to six or seven.

Another early example is the counting span test (Case,
Kurland, & Goldberg, 1982), in which subjects are presented
with an array of items, such as blue and red circles and squares,
and instructed to count a particular class of items, such as blue
squares. After counting aloud, subjects are required to remem-
ber the total and are then presented with another array. They
again count the number of blue squares aloud and remember
the total. After a series of arrays, they are required to recall all
the totals in correct serial order. Thus, the storage and recall
demands are the same as a simple digit span test, but there is
the additional requirement of counting the arrays, which
demands controlled attention and therefore disrupts active
maintenance of the digits.

A large number of such “complex span tests” have now been
developed to measure the capacity of working memory (for a
review, see Conway et al., 2005). The crucial point here is that
the construction of complex span tests is a theory-driven enter-
prise. Such tests require subjects to engage in some sort of sim-
ple processing task between the presentations of to-be-
remembered items. After several items have been presented,
the subject is prompted to recall all the to-be-remembered
items in correct serial order. Such tests are thought to be valid
measures of working memory as proposed by Baddeley and
Hitch because they require access to information in the face of
concurrent processing.

Simple memory span tests (e.g., digit span, word span, letter
span), in contrast to complex memory span tests, do not
include an interleaved processing task between the presentation
of to-be-remembered items. For example, in digit span, one
digit is presented at a time, and after a series of digits the sub-
ject is asked to recall the digits in correct serial order.

One of the most important findings from studies investigat-
ing complex and simple span tests is that, from an individual
differences perspective, complex span is less domain specific
than simple span (Turner & Engle, 1989). Kane et al. (2004)
administered several verbal and several spatial complex span
tests, and the range of correlations across domains was as high
as the within-domain correlations among simple span tests,
and about two thirds of the covariance among complex span
tests was across domains. These results suggest that, although
simple span tests appear to be more domain specific, the pro-
cesses that complex span tests tap beyond the pure storage and
retrieval of information appear to be largely domain general.
Hence. general factor models fit better for working memory
tasks than for simple span tasks (see the next section).

Individual difference studies of working memory reveal the
same type of positive manifold common in the intelligence lit-
erature; as with batteries of intelligence tests, patterns of

convergence and divergence are typically observed amidst the
positive manifold. For example, complex span tests with verbal
content tend to be more strongly correlated with other verbal
tests than with tests with spatial content. Yet the positive mani-
fold is still observed. Because the positive manifold in itself is
always sufficient to extract a general factor (see “g: A Well-
Aged Puzzle”), it comes as no surprise that a general factor of
working memory could be extracted, which is generally referred
to as “working memory capacity” (WMC; Conway, Cowan,
Bunting, Therriault, & Minkoff, 2002; Conway, Kane, & Engle,
2003; Engle, Tuholski, Laughlin, & Conway, 1999).

In the working memory literature, there is considerable
debate about the domain-generality of variation in WMC or, in
other words, whether there is a unitary source of variation or
multiple sources. The debate bears a striking resemblance to
the debate between Spearman and Thurstone. On one side is
the more general/unitary view, which assumes that variation is
largely caused by domain-general factors, and on the other side
is the specificity view, which assumes that variation is largely
caused by more specific factors. In the end, the two sides
acknowledge the existence of both domain-general and
domain-specific sources of variation but they argue about their
relative importance.

There are, however, crucial differences between the possible
interpretation of the general factor of WMC and the general
factor of intelligence. First, as opposed to tests of intelligence,
positive correlations between complex span tests have never
been a prerequisite of “validity,” hence the positive manifold
cannot be attributed to test design.4 Second, working memory
researchers cannot interpret this general factor as a unitary,
within-individual, domain-general working memory process
and/or mechanism that is employed in every working memory
task, similarly to how g is often identified with general cognitive
ability. Such an interpretation would contradict the very find-
ings that complex span tests were built upon and that define
the within-individual construct of working memory as a com-
plex system of domain-general and domain-specific processes.
The right question to ask, then, is, Which component(s) of
working memory cause(s) the general variation?

The answer probably is that WMC reflects individual differ-
ences in the executive component of working memory, particu-
larly executive attention and cognitive control (Engle & Kane,
2004; Engle et al., 1999; Kane, Bleckley, Conway, & Engle,
2001; Kane & Engle, 2002). Cognitive control is a construct,
synonymous to executive function, used mostly in cognitive
neuroscience to refer to the processes, and their neural sub-
strates, that enables top-down, goal-oriented behavior and that
describes different functions such as

sustained activity that is robust to interference; multimodal conver-
gence and integration of behaviorally relevant information; feed-
back pathways that can exert biasing influences on other structures
throughout the brain; and ongoing plasticity that is adaptive to the
demands of new tasks. (Miller & Cohen, 2001, p. 182)

This is a natural candidate to explain the cross-domain cor-
relations among complex span tests, as opposed to the within-

4This is a typical (albeit incorrect; see Mackintosh, 2011b) line of criticism against
the importance of the positive manifold.
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domain correlations among simple span tests, because the the-
ory of working memory is in fact an overlap-theory: The pro-
cesses that bridge verbal and spatial tests are the ones that
constitute the executive component.

According to this view, the reason for the domain-generality
of WMC, as measured by complex span tests, is that complex
span tests “reflect primarily general executive processes and
secondarily, domain-specific rehearsal and storage processes,”
whereas simple span tests “reflect domain-specific storage and
rehearsal skills and strategies primarily and executive attention
processes only secondarily” (Kane, Conway, Hambrick et al.,
2007, p. 24). WMC, then, reflects “the ability to engage con-
trolled attention. That is, they reflect the ability to maintain
activation to a representation in the face of interference or dis-
traction. Therefore, working memory capacity is not ‘capacity’
per se, but rather the ability to control activation” (Conway
et al., 1999). That is, individuals with greater WMC have better
cognitive control processes, such as goal maintenance, selective
attention, and interference resolution (inhibition).

There is a great deal of support for this theory. For example,
individuals who perform better on complex span tests also per-
form better on tests of cognitive control, requiring goal mainte-
nance and the inhibition of irrelevant stimuli (Conway, Cowan,
& Bunting, 2001; Conway, Tuholski, Shisler, & Engle, 1999;
Kane et al., 2001; Kane & Engle, 2003), and are better at resolv-
ing proactive interference from previous trials (Bunting, 2006;
Kane & Engle, 2000; Unsworth & Engle, 2007). Similarly, indi-
viduals who perform better on complex span tests are also
more accurate on lure trials in the n-back test (Burgess, Gray,
Conway, & Braver, 2011; Gray, Chabris, & Braver, 2003; Kane,
Conway, Miura, & Colflesh, 2007).

Research on WMC thus demonstrates that it is domain-gen-
eral processes of cognitive control that are responsible for
across-domain correlations in complex span tests. These pro-
cesses can be operationally defined as what complex span tests
measure beyond the storage and retrieval of information, or
more precisely, for instance, in the case of the reading span
test, the processes that we do not engage when we remember a
simple list of words but we do engage when we remember a list
of words presented as the last word of sentences we read aloud.

So the available evidence points to the role of the central
executive component in the positive manifold of WMC. But
how should one conceptualize this component? In the original
working memory construct,

the central executive was initially conceived in the vaguest possible
terms as a limited capacity pool of general processing resources. …
Implicitly, the central executive functioned as a homunculus, a little
man who took the important decisions as to how the two slave sys-
tems should be used. (Baddeley, 2002, p. 89)

Thus, further research was required to investigate whether
the executive component of working memory is “a single coor-
dinated system that serves multiple functions, a true executive,
or a cluster of largely autonomous control processes—an execu-
tive committee” (Baddeley, 1996, p. 26).

Further research indeed found that this “homunculus” can
be fractionated to subcomponents and should not be conceptu-
alized as a single, unitary executive. Many different tests pur-
port to measure executive functioning directly, including

random number generation, Stroop, Tower of Hanoi/London,
Stop-signal, Wisconsin Card Sorting Test, and several others.
The n-back test, and especially lure trial performance, is also
thought to tap executive processes involved in updating and to
reflect interference resolution. Research on these tests also indi-
cates a multiplicity of executive processes rather than a unitary
central executive. For instance, relatively low correlations have
been found between (a) n-back lure trial performance and com-
plex span (Kane, Conway, Miura et al., 2007); (b) complex
span, Tower of Hanoi, and Wisconsin Card Sorting (Lehto,
1996); and (c) Tower of Hanoi and random number generation
(Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001). Neuro-
maging and neuropsychological studies also support the frac-
tionation of executive processes (Dreher & Berman, 2002;
Kievit et al., 2014; Parkin, 1998; Robbins, 1996).

A latent variable study of executive functions (Miyake et al.,
2000) identified three correlated processes: “(a) shifting
between tests or mental sets, (b) updating and monitoring of
working memory representations, and (c) inhibition of domi-
nant or pre-potent responses” (p. 54). However, even though
the result of some studies are in agreement with the three-com-
ponent model of executive functions (e.g., Lehto, Juuj€arvi,
Kooistra, & Pulkkinen, 2003), others are inconsistent with it
(e.g., McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010;
Salthouse, Atkinson, & Berish, 2003; St Clair-Thompson &
Gathercole, 2006).

Overall, the emerging view is that there are multiple execu-
tive processes involved in the performance of working memory
tests and there are multiple and independent sources of vari-
ance contributing to variation in test performance. The general
factor of WMC does not appear to be linked to a single psycho-
logical process. Instead, it reflects multiple domain-general,
executive processes that are tapped in an overlapping fashion
across a battery of working memory tests.

Working Memory Capacity and Fluid Reasoning (GF)

Because a positive manifold is observed among measures of
WMC, as well as measures of intelligence, it is reasonable to
ask how these general factors are related. The reading span test,
one of the initial complex span tests, was in fact designed to
study the extent to which individual differences in WMC pre-
dict reading comprehension and reasoning, and results demon-
strated that reading span correlated more strongly with the
verbal SAT than did a simple word span test (Daneman &
Carpenter, 1980).

Subsequent work showed that other complex span tasks that
do not involve reading, or even verbal memoranda, also corre-
late more strongly with verbal SAT and other reasoning tests
than do simple memory span tests such as word span, digit
span, and letter span, suggesting that the relationship between
complex span performance and intelligence is largely domain-
general (Kane et al., 2004; Turner & Engle, 1989). Thus, even
though within-domain correlations between working memory
tests and cognitive tests are generally stronger than cross-
domain correlations, complex span tests have shown strong
correlations with measures of reasoning in a domain-general
fashion: verbal complex span tests predict spatial reasoning
tests and vice versa.
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A large number of cognitive tests have been correlated with
diverse complex and simple span tests, and as expected, com-
plex span tests have been shown to be more strongly correlated
with measures of complex cognition, including intelligence
tests, than simple span tests. Most of this research has focused
on tests of fluid reasoning, such as Raven’s Progressive Matrices
or Cattell’s Culture Fair tests. This should come as no surprise,
because working memory is most important in situations that
do not allow for the use of prior knowledge and less important
in situations in which previously learned skills and strategies
guide behavior (Ackerman, 1988; Engle et al., 1999). This
largely echoes Cattell’s original definition of fluid intelligence:
“an expression of the level of complexity of relationships which
an individual can perceive and act upon when he does not have
recourse to answers to such complex issues already stored in
memory” (Cattell, 1971, p. 115).

Two meta-analyses, conducted by different groups of
researchers, estimate the correlation between WMC and the
fluid intelligence factor (Gf) to be somewhere between r D .72
(Kane, Hambrick, & Conway, 2005) and r D .85 (Oberauer,
Schulze, Wilhelm, & S€uss, 2005). Moreover, a study suggests
that it might be even higher for when imposing certain time
contraints on the tests (Chuderski, 2015). This is substantially
higher than the correlation between the general factor (g) and
WMC (r D .48) found in another meta-analysis (Ackerman,
Beier, & Boyle, 2005). Thus, according to these analyses, WMC
accounts for at least half the variance in Gf but only about one
fourth of the variance in g.

Therefore, despite being statistically (near)-identical when
appearing in a latent variable model of cognitive tests, g and
Gf are different constructs. Besides prefrontal damage
(see “Overlapping Networks in the Brain”) and the Flynn-
effect, their different correlation with WMC is a further
means toward dissociating g and Gf (see “Process Overlap
Theory” and “Conclusion” for more elaborate discussions of
this issue).

As well, complex span tests are a stronger predictor of Gf
than simple span tests (Conway et al., 2002; Engle et al., 1999;
Kane et al., 2004) and, of importance, what WMC involves

beyond simple storage correlates to a smaller extent with tests
of crystallized intelligence (Gc) or perceptual speed (Gs).
Although Ackerman et al.’s meta-analysis of working memory
and intelligence independently explored short-term memory’s
and working memory’s correlation with various types of cogni-
tive tests, it did not originally compare these results for each
individual cognitive domain. Based on their results, Figure 6
shows in decreasing order the difference in correlations with
working memory and short-term memory in different types of
ability tests (from Conway & Kovacs, 2013).

It is clear that on one side, with the largest difference, is
the Raven’s Progressive Matrices (Gf), whereas on the other
side, with negligible differences, are tests of general knowl-
edge, as well as tests with verbal content (Gc) and the ones
that measure perceptual speed (Gs). In the middle, with sig-
nificant, but less substantial differences than in the case of
Gf, are spatial tests (Gv) and ones that purport to measure
“general ability” or g. Therefore, this result shows that the
processes complex span tests tap beyond simple storage and
retrieval are strongly associated with Gf, but to a much
smaller extent with Gc and Gs.

There is also evidence showing that the relation between
Gf and WMC is driven by executive processes. A study by
Bunting (2006) demonstrated a correlation between Gf and
complex span and, more important, found that the correla-
tion is a function of the degree of proactive interference in
the span test; the more proactive interference in the test, the
stronger the correlation with Gf. Also, a detailed analysis of
item performance on the Raven’s Progressive Matrices (Car-
penter, Just, & Shell, 1990), a trademark test of Gf, con-
cluded that an important aspect of the test was the discovery
and maintenance of rules that govern the variation among
entries in a problem. More difficult matrix problems (as evi-
denced by more errors) typically involve more rules. Thus,
to solve difficult matrix problems, one must discover a rule
and then maintain that rule while searching to discover a
second rule, and so on. Therefore, the ability to maintain
goal-relevant information (i.e., rules) in the face of concur-
rent processing (i.e., searching for new rules) and distraction

Figure 6. The difference between the correlation with working memory and short term memory for different types of mental tests (based on Kovacs, 2009, p. 94).
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(i.e., filtering of irrelevant features) is essential for successful
performance.

Another study, using the same rules Carpenter et al. identi-
fied, revealed that it is the application of new rules and switch-
ing from old ones that drives the correlation between complex
span and Gf (Wiley & Jarosz, 2011). Finally, it has been demon-
strated that as soon as performance on elementary cognitive
tests becomes automatic and therefore does not require con-
trolled attention, the correlation between such tests and Gf
decreases (Ackerman, 1988; Rabbitt, 1997).

Although a large number of studies have relied on complex
span tests to demonstrate the link between working memory
and Gf, there are other tests that purport to measure individual
differences in WMC but are based on slightly different opera-
tionalizations of the construct. One such method is the visual
array comparison test (Luck & Vogel, 1997), in which an array
of objects (e.g., colored squares) is briefly presented, followed
by a delay interval, then followed by another array of objects
that may be the same or different as the previous array. An
example of a “different” array would be one in which the color
of one square changed from the first array to the second. The
examinee must determine whether the second array is the same
or different from the first. Performance is nearly perfect when
there are fewer than three items in the array but then declines
as more items are added, reflecting the capacity of working
memory. Such array comparison tests have been shown to cor-
relate quite strongly with tests of fluid intelligence (Chow &
Conway, 2015; Cowan et al., 2005; Fukuda, Vogel, Mayr, &
Awh, 2010; Shipstead, Redick, Hicks, & Engle, 2012).

Another kind of working memory test requires coordination
and transformation; subjects are presented with infor–
mation and required to manipulate and/or transform that
information to arrive at a correct response. An example is let-
ter-number sequencing, a test originally developed for neuro-
psychological research, which also appears in the most recent
versions of the Wechsler Intelligence Scales (Gold, Carpenter,
Randolph, Goldberg, & Weinberger, 1997). In this task a series
of alternating digits and letters are presented (e.g., K 6 D 3),
and the subject is required to recall first the letters in alphabeti-
cal order and then the digits in ascending order.

Another widely used coordination and transformation test is
alphabet recoding, which requires the subject to perform addi-
tion and subtraction using the alphabet, for example, (C ¡ 2) D
A. The subject is presented with a problem and required to gen-
erate the answer. Difficulty is manipulated by varying the num-
ber of letters presented, as (CD ¡ 2) D AB. Very strong
correlations have been found between reasoning ability and a
variety of working memory tests that can all be considered in
this “coordination and transformation” class (Kyllonen & Chris-
tal, 1990; Oberauer, 2004; Oberauer, S€uß, Wilhelm, & Wittman,
2003; S€uß, Oberauer, Wittmann, Wilhelm, & Schulze, 2002).

An n-back test constitutes yet another kind of working
memory test. In an n-back test, the subject is presented with a
series of stimuli, one at a time, and must determine if the cur-
rent stimulus matches the one presented n-back. The stimuli
may be verbal, such as letters or words, or visual objects, or spa-
tial locations. Gray et al. (2003) showed that a verbal n-back
test was a strong predictor of performance on the Raven’s
Advanced Progressive Matrices.

Modified versions of simple span tests that transcend simple
storage also tap domain-general WM processes and correlate as
well with measures of Gf as complex span tests. For instance,
simple span tests with long lists correlate as strongly with meas-
ures of Gf as complex span tests (Unsworth & Engle, 2006,
2007). Correlations between simple span and Gf also increase if
the presentation of stimuli is swift. In a running memory span
test (Pollack, Johnson, & Knaff, 1959), subjects are rapidly pre-
sented with a very long list of to-be-remembered items, the
length of which is unpredictable. At the end of the list, the sub-
ject is prompted to recall as many of the last few items as
possible.

Cowan et al. (2005) found that running span correlates well
with various measures of cognitive ability in children and
adults (see also Mukunda & Hall, 1992). Cowan et al. argued
that the rapid presentation in the running span task (e.g., four
items per second as compared to one item per second in digit
span) prevents verbal rehearsal and that any working memory
test that prevents well-learned maintenance strategies, such as
rehearsal and chunking, will serve as a good predictor of Gf. It
is important to note that Cowan does not restrict this interpre-
tation to the running span task: He argued that the critical fea-
ture of working memory tasks such as complex span as
opposed to short term memory tasks such as digit span is that
the former prevent rehearsal, hence they provide a more direct
measure of the scope of attention.

In sum, results with working memory tests other than com-
plex span indeed suggest that it is not the dual-task nature of
complex span tests (i.e., processing and storage) per se that is
necessary for a working memory test to be predictive of Gf;
instead, it is the involvement of executive processes, achievable
in different ways—including but not restricted to dual task-
ing—that is common to these tasks, and what drives their rela-
tion with fluid intelligence.

However, even though all these tests—array comparison,
coordination and transformation, n-back, simple span with
long lists, and running span—are able to predict Gf, multiple
regression analyses indicate that the variance explained by these
tests is not entirely the same as the variance explained by com-
plex span tests (Conway, Macnamara, Getz, & Engel de Abreu,
2011; Kane, Conway, Miura et al., 2007). Hence they probably
tap overlapping but different executive processes, each of which
is differently related to Gf.

Overall, according to the available evidence, the strong corre-
lation between Gf and working memory is driven by the opera-
tion of multiple domain-general cognitive processes that are
required for the performance on tests designed to measure the
capacity of working memory and for the performance on test
batteries designed to assess fluid intelligence.

Goal Neglect

Further evidence for the association between Gf, WMC, and
executive processes comes from studies on goal neglect (Dun-
can, Emslie, Williams, Johnson, & Freer, 1996; Duncan et al.,
2008). In a standard goal-neglect experiment, subjects are pre-
sented with two streams of stimuli on a computer screen and
are instructed to monitor the appearance of targets in one
stream but not in the other. For instance, they might watch two
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streams of digits and letters, and they have to read aloud the let-
ters but ignore the digits in one stream and completely ignore
the other stream. The task starts with an instruction “watch
left” or “watch right,” indicating which stream the subjects
must watch. Near the end of each trial, subjects see another
cue, a C or a – sign, meaning that for the remainder of the task
the subject has to watch the right or left stream, respectively.
That is, if they are already watching the right stream, a C sign
indicates they have to keep watching to the right, whereas a –
sign indicates they have to change to the left.

Some subjects regularly fail to follow the goal instructions.
Duncan and colleagues (Duncan, 1995; Duncan et al., 1996)
termed these errors goal-neglect. They found that the correla-
tion between the subjects’ ability to effectively switch attention
according to the cue strongly correlated with Gf as measured
by the Cattell’s Culture Fair. Moreover, the relationship was
not linear: “Neglect is hardly ever seen among people whose
Culture Fair scores are above the population mean but is almost
universal at more than one standard deviation below the mean”
(Duncan, 1995, p. 725). That is, neglect is almost universal
below a fluid IQ of 85 but practically nonexistent above 100.

Also, Duncan concluded that people in the lowest seg-
ment of the IQ distribution show symptoms of perseveration
similar to those of frontal patients. People with fluid IQ
scores under 1 standard deviation below the mean could
recall the task requirements after the instruction phase, and
just like frontal lobe patients, they were able to correctly
recall the instruction at the end of the experiment; they sim-
ply failed to maintain the goal throughout the course of the
test. Neglect was also sensitive to external prompts, such that
when subjects were given trial-by-trial error feedback so that
their attention was drawn to the neglected task requirement,
those who previously demonstrated goal neglect were able to
perform at a normal level. These results demonstrate that
goal neglect is due not to people with lower IQ being unable
to understand instructions but to their inability to follow
them during the task.

Subsequent experiments (Duncan et al., 2008) revealed a few
important characteristics of goal neglect. One of these is that
goal neglect is unaffected if, instead of C and – signs, more spa-
tially orienting cues, such as arrows pointing to the left or right,
are used. Moreover, neglect is determined neither by the atten-
tional demand during task execution nor by readiness to multi-
ple task components. Various experimental modifications of
the original goal neglect task, such as increasing the processing
demand of the task by increasing the number of letters or num-
bers to be monitored, or having different instructions simulta-
neously prepared for different components of the task, had no
influence on the extent of goal neglect.

However, a manipulation of the complexity of task instruc-
tion, without a corresponding change in the actual real-time
demands of the task to be executed, has a strong effect on goal
neglect (Duncan et al., 2008). That is, goal neglect reflects a
limit in WMC that manifests itself in maintaining representa-
tions of task-relevant rules and requirements rather than limits
in the actual attentional processing required for the task. This
conclusion is further supported by a study (Duncan, Schramm,
Thompson, & Dumontheil, 2012) examining a “rule working
memory” task. In this new task, participants had to remember

a list of complex rules and apply them to stimuli. Duncan et al.
(2012) found that performance on this task correlated more
strongly with Gf than operation span.

Overall, studies on goal neglect and rule maintenance dem-
onstrate that as task requirements become more complex, and
more facts, rules, and instructions have to be stored in working
memory while actually performing the task, the more often
lapses in goal-related control processes will occur in people
with low fluid intelligence.

Process Overlap Theory

We offer a new explanation of the positive manifold, which we
refer to as process overlap theory. The briefest possible sum-
mary of its central assumption is that any test item or cognitive
task requires a number of domain-specific as well as domain-
general cognitive processes. The domain-general processes that
are central to performance on cognitive tests are primarily the
ones that are identified as executive processes in cognitive psy-
chology in general and the working memory literature in par-
ticular. Such processes are recruited by a large number of test
items, alongside domain-specific processes, which are tapped
by items appearing in specific types of tests only. In turn,
domain-general executive processes overlap with domain-spe-
cific processes more than the domain-specific processes overlap
with one another. Such a pattern of overlap of executive and
specific processes explains the positive manifold as well as the
hierarchical structure of cognitive abilities. In this section we
elaborate on this idea as well as its implications.

Process overlap theory is clearly not the first account of the
positive manifold that proposes an overlap of psychological
processes. In particular, it is in many ways similar to Thom-
son’s sampling theory. However, it is also different in crucial
aspects, as becomes apparent from this section and further
highlighted in “Comparison with Other Theories.” Process
overlap theory is also not the first cognitive approach to human
intelligence. Yet it is the first cognitive theory that also provides
a latent variable model and an item response model (discussed
next), as well as an account of the neural mechanisms underly-
ing the proposed overlap of psychological processes (see “Over-
lapping Networks in the Brain”).

Crucially for the theory, the general factor of intelligence
seems not to reflect a single, unitary process but instead
emerges from a limited number of independent sources. Det-
terman (1994) demonstrated mathematically, by calculating
limits of correlations in different scenarios, that g is the result
of a limited number of independent processes, rather than of a
single, unitary process or an almost infinitely large number of
processes. As well, a large number of studies looked at the cor-
relation between so-called elementary cognitive tasks and intel-
ligence. Summarizing the result of such studies, Detterman
(2000) concluded that these elementary tasks do not correlate
with one another, yet each task independently correlates with g,
and it is only together that they explain a substantial part of the
g variance. Similar conclusions were reached by Kranzler and
Jensen (1991, 1993).

In fact, in the intelligence literature the expression “0.30 bar-
rier” refers to the fact that although virtually any cognitive task
correlates with IQ (in this case, as a proxy for g), the correlation
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is always smaller than 0.30 (see Mackintosh, 2011a). Of impor-
tance, this barrier is exceeded by tasks measuring WMC with
correlations as high as 0.80. However, WMC arguably reflects
executive processes and is therefore hardly elementary. More-
over, as we have seen, WMC itself is the result of a number of
independent processes. In fact, according to process overlap
theory, WMC correlates with fluid intelligence exactly because
it is a multicomponent construct with overlapping processes.
Results with tasks that are indeed elementary, and supposedly
tap a small number of cognitive processes, show that g reflects
a number of independent sources.

Process overlap theory can be translated to a structural
model, similar to the ones depicted in Figures 1 to 5. However,
it is different from all those models in a crucial aspect; it chal-
lenges the idea that the across-domain correlations between
diverse mental tests are caused by an underlying factor. Instead,
it proposes that the positive manifold is an emergent property
and, consequently, it translates to a formative model with
regard to the general factor.

The difference between reflective and formative models is
illustrated in Figure 7. The model on the left is a reflective
model, in which the measurements reflect the latent variable.
Such a model requires a stance of entity realism with respect to
the latent variable, in this case the general factor. For reflective
measurement to make sense, one must assume that there is
something out there, represented by the construct, and the
measures are (imperfect) indicators of this something (Bors-
boom et al., 2003). In the case of g, it is proposed that g causes
the measures as well as the covariance of the measures. Accord-
ing to the theory of general intelligence, g causes the measures
because a person’s score on the measure, that is, the IQ-test, is
determined by his score on the latent variable, that is, g. Conse-
quently, variance in the latent variable determines variance in
the manifest variable; hence, the manifest variables’ covariance
is caused by the latent variable.

In formative models the chain of causation is the opposite.
The latent variable emerges because of the indicators and not
the other way around. In a formative model of g, g is the result,
rather than the cause, of the correlations between group factors.
Similar formative latent variables are socioeconomic status and
general health, which each tap common variance between
measures but do not explain it; according to process overlap
theory, g is no different (see also van der Maas, Kan, & Bors-
boom, 2014).5

However, at the level of specific abilities, process overlap the-
ory translates into a reflective model. That is, tests indeed reflect
specific abilities, which do have ontological reality. Therefore,
for the stratum (or strata) below g, process overlap theory is
compatible with a standard oblique model, depicted in Figure 5.
The only addition is that the specific abilities are not perfectly
independent, in the sense that they tap overlapping psychologi-
cal processes. Consequently, there is no possible categorization
of abilities in which the abilities will not be correlated.

Thus, overall, process overlap theory translates to a hybrid
structural model: part formative, part reflective. As a reflective
causal model it corresponds to the oblique model, but it can
also accommodate g as a formative latent variable—the com-
mon consequence, rather than the common cause, of the corre-
lation between group factors. This is illustrated in Figure 8 on a
simplified model, consisting only of a verbal, a spatial, and a
fluid ability factor, and corresponding verbal, visuospatial, and
executive processes.

Because process overlap is probably not the only source of
the all-positive correlations, this model also accommodates
other sources of the general factor, which can range from white
matter tract integrity to mutualism, and so on. In the model,
this is represented as z, the unique variance of g.

The most important difference, then, from g-oriented
accounts of the positive manifold is that, whereas reflective
general factor theories propose a causal influence of a latent
variable, g, on the positive manifold, according to process
overlap theory the positive manifold is an emergent property,
the result of the specific patterns in which item response
processes overlap. A crucial aspect of the theory is that it
emphasizes the processes responsible for errors in perfor-
mance on cognitive test items. The processes that are
responsible for various aspects of executive attention (goal-
monitoring, updating, inhibition of irrelevant stimuli, etc.),
and that are incorporated in the more global concept of
WMC, reflect limits in domain-general processes that affect
performance on a wide range of items.

Therefore, according to process overlap theory, the processes
sampled by different mental test items are not additive. Each
process has its own limitations, and each process has to be
functioning at an appropriate level to arrive at a correct answer
to a mental test item. Thus, executive processes act as a bottle-
neck, and they mask individual differences in specific abilities.
Even if someone were, in theory, capable of successful perfor-
mance on the domain-specific aspect of a mental test item, he
or she might be unable to arrive at a correct answer because of
failing to meet its executive attention demands.

The aforementioned aspects of process overlap theory are for-
malized in an item response model (Equation 1), which provides
the probability of a person (p) arriving at a correct answer on a
test item (i) that taps component processes (C) from a number
of different domains (D). Item response theory is a paradigm of
psychometrics for the study of the mathematical relationship
between latent traits (abilities, in this case) and test scores. Even
though item response theory is primarily used for the construc-
tion and scoring of psychometric instruments, including mental
ability tests, it also has explanatory applications.

According to process overlap theory, there are distinct
within-individual processes (C) tapped by different test items,

Figure 7. A reflective (left) and a formative (right) model.

5Formative and reflective measurement is drastically different, but this issue can-
not be dealt with in this article. The interested reader is referred to Bagozzi
(2007); Edwards (2011); and Howell, Breivik, and Wilcox (2007).
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and these might belong to different cognitive domains (D).
Therefore, process overlap theory translates into a multidimen-
sional item response theory (MIRT). There are two general
kinds of multidimensional models: compensatory and noncom-
pensatory models (for an introduction to MIRT, see Reckase,
2009). In compensatory models, the different dimensions (pro-
cesses) are combined in a linear, additive manner to produce
the probability of solving the item correctly. Therefore a high
score on one of the dimensions can compensate for a weakness
in another.

In noncompensatory models, each dimension is treated sep-
arately, and the final probability of solving the item is the prod-
uct of all of the individual probabilities, as if a single item
consisted of a set of independent, unidimensional “subitems,”
each of which has to be solved correctly in order to arrive at a
correct answer. Therefore the probability of solving the item is
a nonadditive and nonlinear function of the score on each indi-
vidual dimension. In such a model, because each dimension
has to be passed individually, a low score on any of the dimen-
sions will not be compensated by a high score on another one.
Mathematically, the main difference is that in compensatory
models it is the sum of ability scores that determine the overall
probability of success, whereas in noncompensatory models it
is their product.
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where:
Qplm D the process score for the pth person on the mth process

of the lth domain

ail D the discrimination parameter for the lth domain on the
ith item

bil D the difficulty parameter for the lth domain on the ith

item
D D number of domains tapped by the item
C D number of processes in the given domain tapped by the

item
Again, process overlap theory translates into a hybrid between

the two general families of MIRT models. Within each cognitive
domain (D) the processes are additive, which is reflected by a
compensatory model. Across domains, however, the model is
noncompensatory. The probability of passing each individual
dimension (i.e., executive, spatial, verbal, etc.) is calculated, and
their overall product determines the probability of solving the
item. Therefore, if there is a single one of the dimensions
involved that the person cannot pass, they will not provide a cor-
rect answer—in practice, the model behaves as if the individual
cognitive domains are individual and independent obstacles to
overcome within the same item.

For example, a person with low-executive “ability” scores
will have a low probability of getting an item right, even if the
person has high scores on the specific processes that are also
tapped by the items. That is, with lower executive functioning,
errors are more likely to be the result of not being able to cope
with the executive demands of the task, regardless of the addi-
tional domain-specific components. This nonlinearity is
responsible for the bottleneck nature of the overlapping execu-
tive processes, which in turn explains why the strength of the
positive manifold differs between populations.

For instance, let us assume that the processes that are tapped
by the tasks developed by Duncan and colleagues, outlined in
the previous section, and that are involved in maintaining task
goals in working memory, are tapped along with domain-
specific abilities by different tests. Populations that differ in
their average level of goal maintenance processes will show
marked differences in the extent of domain-general versus

Figure 8. Process overlap theory as a latent variable model.
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domain-specific variance. The greater the probability of failing
on the goal maintenance component, the less individual differ-
ences in specific processes matter in arriving at a correct answer
in different tests. Therefore, different tests will correlate more
strongly, and a general factor will explain more variance.
Process overlap theory proposes that this is the cause of factor
differentiation.

Yet, according to process overlap theory, the strength of the
positive manifold is not the sole function of the population’s
level of executive functioning; it is also of the extent to which
the tests tap executive processes. The more they do, the more
probable it is that a person’s error will be the result of a failure
on the executive dimension(s) of the task, regardless of its bur-
den on other processes, and the person’s possible high level on
those processes.

Take working memory as a theoretically unambigous exam-
ple.6 As we have seen, working memory tasks, such as complex
span, require executive processes to a much larger extent than
short-term memory tasks, such as simple span. According to
process overlap theory, this is exactly why WMC is much more
domain-general than short-term memory capacity, that is, why
the patterns of variation are more domain-general in complex
span than in simple span. In complex span, relative to simple
span, errors are more likely to occur as the result of domain-
general executive processes, regardless of whether the task is
spatial or verbal.

The example of short-term versus working memory also
highlights how complexity is defined in the context of process
overlap theory: It refers to the extent to which a test taps execu-
tive/attentional processes. Hence, the reason why tests of fluid
reasoning have the highest g-loading is the same reason why
complex tasks have higher g-loadings than less complex tasks;
they all tap central executive processes that are involved in a
wide variety of mental test performance across domains. This
also explains why working memory is strongly related to intelli-
gence in general, and in particular why what working memory
tasks measure above and beyond pure storage is most strongly
related to fluid reasoning.

Through its emphasis on errors due to ineffective executive
processes as well as executive task demands, the theory also
accounts for the worst performance rule, because worst perfor-
mance is often indicative of failures in executive attention pro-
cesses (Larson & Alderton, 1990). In particular, in the vast
majority of studies, the worst performance rule has been identi-
fied in reaction time tasks, in which the slowest reaction times
are hypothesized to be the result of posterror slowing, which, in
turn, reflects response-monitoring and cognitive control
(Dutilh et al., 2012).

Overall, the most important aspect of the MIRT model pre-
viously proposed is that it formalizes the interplay between a
tests’ load on the executive system and a given population’s
level of executive functioning in determining the strength of
the positive manifold and therefore the amount of variance
accounted for by the general factor. This is because the proba-
bility of not arriving at a correct solution to a mental test item

due to failures on domain-general rather than domain-specific
processes will be a function of both the extent to which a test
item taps domain-general executive processes and the level of
functioning of these domain-general processes in the popula-
tion studied.

Process overlap theory therefore explains the strength of the
positive manifold in a given population. This also means that a
complete understanding of the within-individual processes that
are required to solve an item is not needed in order to explain
patterns of individual differences. Figure 9 illustrates this point.
The figure shows a matrix-reasoning item, the kind that is typi-
cally found in tests of inductive, nonverbal, fluid reasoning that
load highly on fluid intelligence (Gf). To solve the item, one
has to apply the rule that Carpenter et al. (1990) defined as
“distribution of three”: The triangles come in three different
colors, and the reversed S-s in the middle of the triangles come
in three different sizes. Applying this rule to both dimensions
gives the correct answer: 1.

Let us imagine that we have a test that comprises dozens
of similar items, all of which require the discrimination and
interpretation of color in order to map the relation between
the figures. If one analyzes the latent dimensions of perfor-
mance on this test, one is unlikely to find that individual dif-
ferences in the accuracy of color discrimination, measured
by a standard psychophysical task, contribute to variation in
the total score.

However, this changes dramatically once the test is adminis-
tered to a population of completely color-blind people when
contrast is equated. If one is not able to discriminate red, green,
and yellow, his chances of arriving at a correct answer on this
example item is reduced to 33%, because the best response is a
guess between Answers 1, 4, and 6—provided, of course, that
the person already successfully applied the “distribution of
three” rule on the other dimension. In a population where color
vision is impaired but still exists, individual differences in color
discrimination ability may become important and explain a
large portion of the variance in test performance. The point is
that, even though color vision is clearly required to solve the
task, in normal healthy populations it will not contribute to
variation in performance.

Similarly, if one modifies the item so that, instead of three
different colors, three blue figures are of slightly different
shades, with hardly noticeable differences, variation in the abil-
ity to notice such differences will also contribute to individual
differences in the performance on the task. In fact, it is such
subtle details of test content that determine what a test actually
measures:

Virtually any test can be made into a measure of Gf by raising the
requirements for exercising reasoning. Similarly, almost any test
can be made into a measure of Gc by increasing the extent to which
individual differences in knowledge are assessed. And, by increasing
the requirements for speeded performance, almost any test can be
made to measure Gs, at least in part. (Horn, 1989)

At the same time, it is important to emphasize that the over-
lap of cognitive processes tapped by various mental tests is not
simply a measurement problem. Of course, the characteristics
of the task determine the nature of the processes involved at
arriving at a correct solution. For instance, one can design a

6Working memory serves only as a comprehensible illustration here: Scores on
working memory tasks are nondichotomous, and the actual IRT model, described
by the preceding equation, is applicable only to dichotomous test scores.
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spelling test, in which examinees have to decide whether a list
of English words appearing on a screen, such as “baccalaureate”
or “reconnaissance,” are written correctly. Such a task purport-
edly measures crystallized skills, acquired through formal
schooling. Now imagine that each item is mirrored to an axis
above the given word. As a result of that, the test would start
invoking visual skills. Finally, by adding a strict time constraint
to make the correct-incorrect decision, variation in processing
speed would start to have a strong role.

However, in practice, the exact opposite is the case. Test
developers devote a lot of time and effort to constructing unidi-
mensional measures, tests that purportedly tap a single ability
only. That there is still an overlap in executive/attentional pro-
cesses is more revealing of the psychological nature of such
processes than of psychometric test construction.

Crucially, process overlap theory predicts that the psycho-
logical processes that determine whether individual differences
will be primarily domain-general are not necessarily deter-
mined by the cognitive domain the test purports to measure.
Consider, for instance, the following number series item, which
is typically categorized as numerical reasoning (e.g., in Acker-
man et al., 2005). To find the next element in the series, one

has to find the simplest rule according to which the last num-
ber(s) can be calculated from the previous one(s).

2, 4, 8, ??
A) 9 B) 12 C) 14 D) 20
When eyeballing the three numbers in the preceding series,

the first thing to occur is that they are 2 on the power of 1, 2,
and 3. In other words, the subsequent number is always twice
the number before, which instinctively provides 16 as the natu-
ral continuation of this series. The number 16, however, is not
among the possible answers. One must, therefore, find another
rule. The correct answer is in fact C, which one can figure out
in two ways: (a) the difference between two subsequent num-
bers increases by two after each element (i.e., 4 – 2 D 2, 8 – 4 D
4, X – 8 D 6?) or (b) the subsequent number equals the sum of
the last two elements plus 2. Both rules lead to 14 as the next
element (albeit the one following the next differs in the two sol-
utions: 22 and 24, respectively).

What kind of psychological processes contribute to arriving
at a correct answer on this item? On a global level, this task
requires the ability to find general rules from specific instances,
which qualifies as inductive reasoning. Yet on a more refined
scale, there are a number of processes at play. Naturally, one

Figure 9. Example item to demonstrate process overlap theory.
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needs to be aware of numbers, as well as basic arithmetic opera-
tions. But more important, it also requires cognitive inhibition.
One has to suppress a dominant response (16) and discard a
superficially obvious rule in order to find another one.

Number series items correlate strongly with matrix tests,
consisting of items like the one presented in Figure 9. The rea-
son, according to process overlap theory, is the overlap of the
psychological processes tapped by the two kinds of tests: Both
require inductive reasoning and thus cognitive inhibition. Nev-
ertheless, these two kinds of items are regularly categorized as
numerical and figural, respectively, in accordance with the con-
tent of the items.7 In a similar vein, verbal analogies, which also
probably tap processes that overlap with the ones required for
number series and matrix reasoning, are often categorized as
tests of verbal ability.

Naturally, both test makers and test takers need to categorize
tests, and at a practical level it does indeed make perfect sense
to categorize number series, matrix reasoning, and verbal anal-
ogies as numerical, figural, and verbal, respectively. Yet, accord-
ing to process overlap theory, categorization of tasks according
to the kind of material, by domain or content, is not necessarily
instrumental in understanding the determinants of individual
differences.

The reason why tests of fluid intelligence are particularly
successful at measuring the processes responsible for the
across-domain correlations between mental tests is that they
are more or less free from particular domains. Therefore they
are able to reflect “pure” complexity, that is, executive/atten-
tional requirements, which are also present in tests of verbal or
spatial reasoning, but in those cases they are tapped alongside
with the corresponding domain-specific processes.

This, according to process overlap theory, explains the rela-
tion between g and Gf. They are conceptually different, as Gf rep-
resents individual differences in fluid reasoning, whereas g does
not represent any psychological process. Yet, according to confir-
matory factor analysis, they correlate perfectly or almost per-
fectly. This is because, provided that the general factor was
extracted from a large-enough test battery measuring diverse
cognitive abilities, which is a key point in obtaining a “good” g
(Major, Johnson, & Bouchard, 2011), variation in the specific
abilities will be mostly cancelled out, and the variation reflected
by g will mostly be the result of individual differences in domain-
general processes. Process overlap theory proposes that such pro-
cesses could mostly, although probably not exclusively, be labeled
as executive processes, involved in cognitive control, goal moni-
toring, inhibition of irrelevant stimuli, and the like.

To sum up this section: Process overlap theory interprets g
as a formative construct while accepting a reflective and there-
fore realist interpretation of specific abilities. It proposes that
mental test items tap a number of items in different cognitive
domains, and whereas a weakness in a process can be compen-
sated by a strength in another process within the same domain,
such compensation is not possible across domains.

Overlapping Networks in the Brain

A comprehensive review of neuroimaging studies, which
reviewed imaging studies not only of a wide range of intelli-
gence tests but also of mind games such as chess, found that
intelligence is distributed throughout the entire brain (Jung &
Haier, 2007). One of the main findings of the publication was
that multiple discrete brain regions are associated with intelli-
gence, with no single area activated in all of the studies sur-
veyed. However, the article also demonstrated that the areas
active in most studies are typically found in the frontal as well
as the parietal lobes.

Another study, focusing on the subscales of the Wechsler
Intelligence Scales, demonstrated that the neural correlates of g
were to be found in several brain areas, with the strongest rela-
tionship in the frontal lobes (Colom, Jung, & Haier, 2006a). Yet
another study, which applied the method of correlated vectors
(cf. Jensen, 1998) in order to focus specifically on g, reinforced
the conclusion that neural correlates of g are distributed across
the entire brain, but the majority of them are found in the fron-
tal lobe (Colom, Jung, & Haier, 2006b).

Besides neuroimaging, lesion studies have arrived at a simi-
lar conclusion, highlighting distributed brain regions for g but
also the importance of prefrontal cortex as well as the white
matter tracts connecting it with other areas (Barbey, Colom, &
Grafman, 2013; Gl€ascher et al., 2010). However, as we see, dif-
ferent components of g can be dissociated through frontal dam-
age, because performance on some tests is sensitive to such
damage while performance on other kinds of tests remains
intact.

Because of a lack of corroborating results, the search for a
“neuro-g” has met with minimal success. As discussed earlier,
the g factors extracted from different batteries are virtually
equivalent from a statistical perspective, provided that the bat-
teries are diverse enough. In the light of this, it is remarkable
that the search to find the common neural underpinnings of
different g factors has failed:

If two test batteries, for example, are weighted differently with tests
of memory, spatial reasoning, verbal ability and the like, different
brain correlates of the respective g-factors may emerge, gray matter
(GM) correlates of g depend in part on the tests used to derive g.
(Haier et al., 2009, p. 137)

A confirmatory modeling approach to the brain correlates of
g (Kievit et al., 2012) also found that “neuro g should not be
taken to refer to a unidimensional constellation of neural prop-
erties identical to g” (p. 7); on the contrary, “neuro-g” is a for-
mative latent property determined by, rather than the cause of
or reflected by, neural measures. It indeed appears that “intelli-
gence is a moving target” (Colom et al., 2011). Overall, studies
that have focused on g to identify the neural correlates of intel-
ligence have found little consistency, but of equal importance,
especially for process overlap theory, is the result that also
emerged from such studies, that the prefrontal cortex seems to
play an important role.

Instead of g, other studies have focused on specific ability
factors, and indeed identified different brain correlates for each
factor. For instance, scores on the Wechsler Intelligence Scales
have weaker neural correlates in the prefrontal cortex than
scores on the Raven’s Progressive Matrices, suggesting that the

7With notable exceptions: Horn (1989), for instance, in his categorization of ability
tests according to the Gf-Gc model, put “inductive reasoning, measured using let-
ter series, number series and/or figure series” as the first example of indicators of
Gf, “matrices reasoning with visual patterns” comes only second (p. 79).
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prefrontal cortex is more strongly related to Gf than to Gc. On
the other hand, the temporal lobes were strongly related to Gc
but not Gf (Choi et al., 2008). Another study also found that
Gc is uniquely correlated with activity in the temporal lobes,
whereas Gv, the spatial factor, had nonoverlapping correlates
in the frontal and occipital lobes (Colom, Haier, & Head, 2009).

Again, the results of lesion studies corroborate with imaging
studies: They also imply different neural substrates for different
specific abilities. In classic neuropsychology, the received view
was that frontal lobe damage does not impair IQ (e.g., Hebb,
1940; Weinstein & Teuber, 1957) exactly because the clinical
tests used in such patients were strongly biased toward crystal-
lized intelligence, Gc. Once the distinction between Gf and Gc
is made, it becomes clear that frontal lobe damage severely
impairs the former, whereas the latter indeed often remains
intact (Duncan, 1995; Duncan et al., 1996).

In the light of such results, it should come as no surprise that
the “intelligence” measured by different test batteries gravitat-
ing to different specific abilities cannot be universally localized,
and the g factors derived from such batteries, despite being sta-
tistically indistinguishable, do not have identical neural
correlates.

Instead of g, then, let us focus on fluid reasoning (Gf). Again,
even though it is statistically identical to g, imaging studies dem-
onstrate their dissociability; whereas g cannot be localized, Gf is
linked to the prefrontal (primarlily dorsolateral) and partly to the
(primarily posterior) parietal cortex with remarkable consistency.
That is, diverse tests tapping fluid reasoning, including matrix
items, letter series, or verbal syllogisms, all have similar patterns
of activation in the prefronal, and partly in the parietal cortex (for
a review, see Kane, 2005). In particular, reasoning problems iden-
tical or similar to the ones found in Raven’s Progressive Matrices,
probably the most typical test of Gf, consistently activate certain
areas in the prefrontal cortex (Christoff et al., 2001; Prabhakaran,
Smith, Desmond, Glover, & Gabrieli, 1997; Wharton et al., 2000),
and this conclusion is further supported by lesion studies (e.g.,
Waltz et al., 1999). Similar activation was found in other, mostly
verbal analogical reasoning tasks (Green, Fugelsang, Kraemer,
Shamosh, & Dunbar, 2006; Luo et al., 2003; Volle, Gilbert, Benoit,
& Burgess, 2010; Wendelken, Nakhabenko, Donohue, Carter, &
Bunge, 2008), pointing to an indifference of content in fluid tasks
(see also Duncan et al., 2000).

A lesion study provides further evidence that is in agreement
with imaging studies by pointing to the importance of specified
areas within the prefrontal and parietal cortex (Woolgar et al.,
2010). The study compared different areas of the brain to
explore the extent to which, statistically, brain damage in a
given area is associated with loss of fluid intelligence on aver-
age. Using multiple regression, it found that the same amount
of tissue damage that predicts a 1-point loss of fluid IQ, if it
occurred elsewhere in the brain, corresponds to a 6.5-point
impairment if found in particular prefrontal and parietal
regions. Of importance, partial correlations showed that each
of the regions studied made an independent contribution to the
impairment in fluid intelligence, pointing to the involvement of
independent neural mechanisms.

Imaging studies of working memory have identified similar
patterns of prefrontal and parietal activation for the central
executive as the ones identified for Gf (see Henson, 2001;

Wager & Smith, 2003). A large-scale review concludes that “the
central executive maps to mid-lateral prefrontal regions, partic-
ularly left and right dorsal lateral prefrontal cortex” (Henson,
2001, p. 166).

Looking at various actual cognitive functions that any mecha-
nism called the “central executive” could be reasonably expected
to perform, it has indeed been found that one of the chief
functions of the prefrontal cortex is cognitive control (Badre &
Wagner, 2004; Botvinick, Braver, Barch, Carter, & Cohen, 2001;
Cole & Schneider, 2007; E. K. Miller, 2000; E. K. Miller & Cohen,
2001; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008) or, syn-
onymously, the top-down monitoring of goal-directed behavior
(Asplund, Todd, Snyder, & Marois, 2010; Braver & Bongiolatti,
2002; Corbetta & Shulman, 2002; Farooqui, Mitchell, Thompson,
& Duncan, 2012; B. T. Miller & D’Esposito, 2005). On a less
global scale, the prefrontal cortex is involved in such cognitive
operations as task switching (e.g., Derrfuss, Brass, Neumann, &
von Cramon, 2005; Sohn, Ursu, Anderson, Stenger, & Carter,
2000) and response inhibition (e.g., Aron, Robbins, & Poldrack,
2004; Chambers et al., 2006), among others.

Once again: In agreement with neuroimaging studies of
healthy participants, lesion studies also point to a large com-
monality between the neural substrate of executive functions
and fluid intelligence, and locate this substrate in the prefrontal
and posterior parietal areas (Barbey et al., 2012). Yet it is crucial
to note that the prefrontal cortex comprises a large portion of
the entire cortex and contains a number of distinct subsystems,
both cyto-architectonically and functionally. Accordingly, dif-
ferent executive functions probably map on different parts of
the prefrontal cortex (e.g., MacDonald, 2000; Stuss & Alexan-
der, 2000).

In particular, some of the studies surveyed earlier in this
article have found more medial activation, whereas others reg-
istered the activation of lateral areas; some processes seem to
induce bilateral activation, whereas the neural substrate of
others appears to be unilateral; finally, some studies found the
coactivation of the anterior cingulate and/or parietal areas,
whereas others have not. However, a recent meta-analysis of
193 imaging studies of different executive processes tapped by
various executive tasks was able to identify common activation
in what they call a “cognitive control network,” comprising the
dorsolateral prefrontal cortex, the frontopolar and orbitofrontal
cortices, and the anterior cingulate (Niendam, Laird, & Ray,
2012).

To sum up the argument so far: fluid intelligence (Gf), the
central executive component of working memory, and various
cognitive processes that serve the top-down control of goal-
directed behavior have strongly overlapping neural substrates
in the prefrontal cortex (for a summary of related evidence, cf.
Kane & Engle, 2002).

It is at least as important from the perspective of process
overlap theory that the activation of these brain areas is inde-
pendent of content: These same brain areas of the prefrontal
and parietal cortex are involved in different domains of cogni-
tion. For instance, Duncan and Owen (2000) reviewed 20 stud-
ies that explored brain activation in different types of tasks, the
content domain of which included both spatial and verbal
tasks. They concluded that the recruitment of frontal areas “is
extremely similar from one cognitive demand to another,
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suggesting a specific network of prefrontal regions recruited to
solve diverse cognitive problems” (Duncan & Owen, 2000,
p. 476). The same areas that compose the “cognitive control
network” have also been labeled the “multiple demand system”
in order to directly refer to the fact that they are involved in
diverse cognitive activities (Duncan, 2010).

However, there is a danger of such analysis revealing over-
lapping activation at the group level even when it does not exist
within individuals. This methodological problem was addressed
by Fedorenko, Duncan, and Kanwisher (2013), who undertook
a study looking at activation overlap within individual subjects.
They used seven tasks, including a spatial and a verbal working
memory task, a mental arithmetic task, and the Stroop task,
and found domain-general activation in the expected frontal
and parietal areas at the indivdiual level, too, confirming the
results of previous studies that employed group analysis.

A study by Duncan et al. (2000), which purportedy
attempted to identify a neural system associated with g but in
fact employed tests of fluid reasoning (Gf), found that when
high g-(Gf)-loading was contrasted with low g-(Gf)-loading, a
pattern of activation in the lateral frontal cortex emerged, and
this was the only area commonly activated by spatial and ver-
bal tasks. Another study investigated neuroanatomic overlap
of different cognitive abilities and identified specific regions in
the frontal lobes that are frequently shared (Colom et al.,
2013).

A recent study conducted by Rom�an et al. (2014) took a dif-
ferent perspective: They looked at brain correlates of latent var-
iables at different levels of the “hierarchy of intelligence,” that
is, in the higher order latent variable model (see “g: A Well-
Aged Puzzle”). They found that as one moves upward in the
hierarchy from specific factors through group factors to g, the
gray matter correlates are smaller and more frontal. The study
concluded that “factors capturing the variance common to
both specific measures and group factors partial out the speci-
ficity present at the measurement level. Interestingly, removing
specific variance reveals that frontal regions in the brain are
crucial for supporting human intelligence” (p. 3816).

Process overlap theory proposes that as one moves up the
hierarchy of abilities, specific component processes gradually
disappear, and by the time one gets to the processes directly
reflecting g, executive ones are of great importance. Because
specific processes have diverse brain correlates, whereas it is
mostly frontal regions that are involved in executive processes,
the results of Rom�an et al. can be interpreted as the neural
equivalent of the psychological explanation proposed by pro-
cess overlap theory.

Having discussed the domain-general involvement of fron-
toparietal areas in reasoning tasks, it is important to point out
that imaging studies of working memory have also registered
the domain-generality of neural activation in the frontal cortex.
A meta-analysis of 60 neuroimaging studies (Wager & Smith,
2003) found that the fractionation of working memory accord-
ing to content was limited to the posterior areas: No fraction-
ation was found in the frontal cortex according to content
domains. More precisely: They found that the central executive
could be further fractionated as well, but according to processes
rather than the type of material.

Because the significance of complex span tasks has been
emphasized throughout this article, an imaging study of com-
plex span tasks is particularly interesting, especially because it
directly looked for the common neural underpinnings of spatial
and verbal complex span, applying a novel methodology that
uses both within-domain and across-domain conditions, as
well as contrasting complex span with both pure storage and
pure processing (Chein, Moore, & Conway, 2011). The study
indeed demonstrated the domain-general activation of the pre-
frontal cortex, the posterior parietal cortex, and the anterior
cingulate in complex span tasks.

More recent studies employing a network perspective have
also concluded that the prefrontal cortex is often coactivated
with brain areas involved in domain-specific cognition. The
network approach to brain functioning is an emerging para-
digm in cognitive neuroscience, based on the recognition that
neural computations involved in cognition are not performed
by isolated brain areas but rather are the result of networks of
interconnected areas (Bressler & Menon, 2010; He & Evans,
2010; Heuvel & Pol, 2010; Sporns, 2002). Therefore, the study
and graph theoretical modeling of the structural and functional
connectivity of the human brain—the human connectome
(Toga, Clark, & Thompson, 2012)—is the central aim of
research in the network approach.

Network analysis of the human brain has revealed that it can
be characterized as a “small world network,” that is, a network
consisting of local clusters of strongly interconnected nodes but
also of short paths that link the individual clusters (Achard, Sal-
vador, Whitcher, Suckling, & Bullmore, 2006; Bassett & Bull-
more, 2006). This architecture, which is both modular and
strongly interconnected, makes brain wiring economical and
highly efficient at the same time. The specialized modules are
connected with the aid of connector hubs: sets of highly con-
nected and central nodes with diverse and long-range connec-
tions that function as global interlinks or bridges between the
individual modules or clusters, ensuring short overall path
length and thus high efficiency (Sporns, Honey, & K€otter,
2007).

Of importance, “most studies identified hubs among parietal
and prefrontal regions, providing a potential explanation for
their well-documented activation by many cognitive functions”
(Bullmore & Sporns, 2009, p. 190), and “studies on the network
of areas of the primate and human cerebral cortex showed that
the PFC, especially the dorsolateral part (PFC DL) is an impor-
tant hub region where information from different functional
brain systems are integrated” (N�egyessy, B�anyai, Nepusz, &
Bazs�o, 2012, p. 39). N�egyessy et al. (2012) also documented
that in the imaging literature the single area identified most
often is the prefrontal cortex, and they performed network
analysis to demonstrate that this is not the result of the selectiv-
ity of eresearchers but an inevitable consequence of cortical
processing.

Apparently, the same regions that were identified in tradi-
tional studies as the overlapping neural substrate of executive
processes, working memory, and fluid reasoning are referred to
as the “frontoparietal control system” in network neursocience
as well (Spreng, Sepulcre, Turner, Stevens, & Schacter, 2013;
Vincent et al., 2008). Being one of the most connected networks
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of the brain (Cole, Pathak, & Schneider, 2010), this system is
attributed with functions of regulating other subnetworks.

It is remarkable from an individual differences perspective
that of all brain networks the frontoparietal network has the
largest variability in functional connectivity, larger than any
other network in the brain (Mueller et al., 2013). Moreover,
several studies have demonstrated that variation in the global
connectivity of these regions correlates with intelligence as well
as cognitive control (Cole & Yarkoni, 2012; Heuvel & Stam,
2009; Santarnecchi & Galli, 2014; Song et al., 2008).

There are two further results in cognitive neuroscience that
are highly relevant with regard to process overlap theory. First,
a number of studies found that the same frontal areas that func-
tion as hubs are capable of serial processing only, and therefore
they severely limit the capacity of different domain-specific
cognitive systems: “The prefrontal and dorsal medial frontal
cortex [function] as a frontal lobe network recruited to meet a
wide variety of cognitive demands, making this system well
suited to act as a central, amodal bottleneck of information
processing” (Dux, Ivanoff, Asplund, & Marois, 2006). These
areas are therefore primary candidates for being the neural sub-
strate of capacity limits (Dux et al., 2006; Koechlin & Hyafil,
2007; Marois & Ivanoff, 2005; Tombu et al., 2011), probably
strongly affecting working memory and intelligence. Because
process overlap theory focuses on the limitations of executive
processes as the cause of both the positive manifold and factor
differentiation, this provides a direct link from the theory’s psy-
chological hypothesis to its possibly underlying neural
mechanism.

Second, process overlap theory proposes that the interaction
between the level of executive processes and the executive
demands of the task is of critical importance with regard to the
strength of the positive manifold. Hence it is of great signifi-
cance that activation in relevant regions appears to be a func-
tion of both the level of ability and the executive demands of a
given task. The vast majority of the studies just cited, docu-
menting prefrontal and parietal activation for executive pro-
cesses, working memory, and fluid intelligence, demonstrated
increased activation as a function of the demand for the con-
struct in question. As well, several studies found an increase in
activation that is inversely related to the participants’ level on
the construct. Kane’s (2005) review of prefrontal involvement
in fluid reasoning concludes that “PFC is recruited to solve
inductive reasoning problems under worst-case conditions,
such as when problems are most difficult or when one has
reduced fluid abilities” (p. 156).

Unfortunately, simultaneous tests for brain activity as the
function of performance within a task and as the function of
differences between tasks are largely missing from the litera-
ture. That is, activation differences due to task complexity and
activation differences due to variation in individuals’ ability are
not clearly differentiated. Therefore a current study, which
addresses exactly this question, is particularly interesting. Kievit
et al. (2016) employed a modern psychometric approach to
neuroimaging to test for overlapping brain correlates of diffi-
culty and ability parameters in fluid reasoning tasks. Using a
conjunction analysis, they found three regions the activation of
which depended on difficulty and ability: bilateral angular gyri,
bilateral precuneus, and the left superior frontal gyrus. This

demonstrates that the regions that are registered in between-
subject designs (of differing fluid intelligence) are the same
ones that are registered in within-subject designs (of increasing
difficulty in fluid tasks); again, this seems to point to the neural
underpinning of the interaction proposed by process overlap
theory.

To summarize this section: According to process overlap
theory, the positive manifold is caused by the overlap of execu-
tive processes that are involved in both working memory and
intelligence. The present state of research in neuroscience dem-
onstrates that the neural correlates of such processes are (a)
indeed involved in working memory and intelligence, and (b)
indeed activated in an overlapping fashion that is in agreement
with the tenets of the theory, and finally: (c) the frontal lobe is
strongly connected to other, more specialized parts of the brain.
In other words, the overlap the theory proposes appears to
actually take place in the human brain.

Comparison With Other Theories

There have been enormous theoretical endeavors in the field of
human intelligence, mostly focusing on the nature, structure,
or interpretation of the concept itself. Even a simple elaboration
of these accounts is beyond the possibilities or aims of this arti-
cle. We have provided an explanation of the positive manifold
and a number or strongly related phenomena. In this section,
therefore, we compare only process overlap theory to accounts
of the same empirical phenomena and not to theories of intelli-
gence in the broad sense. Similarly, because process overlap
theory is not a taxonomy of the structure of variation in human
abilities, no comparison to such taxonomies (like the CHC,
McGrew, 2009; or the VPR, Johnson & Bouchard, 2005, model)
is provided.

The first theory to consider is, of course, g-theory, the idea
that different IQ-tests correlate because they all measure the
same latent variable, which can be interpreted as either general
intelligence or a parameter affecting all cognitive operations.
Because this idea is thoroughly criticized in the first part of the
article, we find it unnecessary to further elaborate on why pro-
cess overlap theory is more plausible than this account.

The second is Thomson’s sampling theory, which proposes
that the correlation between any two mental tests is the func-
tion of the number of shared “bonds” the tests sample. Thom-
son demonstrated that this principle is sufficient to produce the
positive manifold, without postulating a general factor. This
account has a lot in common with process overlap theory, espe-
cially with regard to higher order, more general processes ver-
sus lower order, more specific processes:

The mind, in carrying out any activity such as a mental test, has two
levels at which it can operate. The elements of activity at the lower
level are entirely specific, but those at the higher level are such that
they may come into play in different activities. Any activity is a
sample of these elements. (Thomson, 1916, p. 341)

In fact, from a broad perspective, process overlap theory can
be considered a modern sampling theory.

The continuation of the preceding paragraph, however,
already highlights a crucial difference: “The elements are
assumed to be additive like dice, and each to act on the ‘all or
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none’ principle, not being in fact further divisible”8 (Thomson,
1916, p. 341). Contrary to this assumption, process overlap the-
ory proposes a nonadditive overlap of psychological processes.
In particular, the executive/attentional processes that typically
overlap with domain-specific ones function as a bottleneck:
Failure to pass the executive demands of a test renders individ-
ual differences in specific processes unimportant for overall
performance. As a consequence, the correlation between tests is
not simply the function of the sheer number of overlapping
processes in relation to the total number of activated processes,
as in Thomson’s account.

The two accounts also differ markedly in their view of brain
functioning. The bonds theory subscribed to a version of con-
temporary views on “equipotentiality,” denying the localization
of brain function. In fact, Thomson argued that the human
brain consists of a myriad of bonds and assumed that the sam-
pling process is completely random, with tests differing only in
the number of bonds they sample. Process overlap theory, on
the other hand, draws heavily on results from neuroscience
that have been obtained since Thomson’s time, and which
demonstrate that executive processes are primarily seated in
the prefrontal cortex and that this area of the brain is the one
most heavily interconnected with other areas.

This is an important difference, as it directly addresses two
valid criticisms of the sampling model (summarized in
Eysenck, 1987, and van der Maas et al., 2006). First, it logically
follows from the sampling model that the more bonds a test
samples, the higher its average correlation with all other tests,
because it is more likely to randomly share bonds sampled by
other tests. This means that a test’s g loading is the sole func-
tion of the number of bonds sampled by the test. However, a
number of tests, which supposedly measure a narrow range of
“bonds,” load highly on g. Yet, according to process overlap
theory, g loadings depend on the involvement of executive pro-
cesses seated primarily in the prefrontal cortex rather than on
the number of processes measured.

The second criticism is even more directly related to the
brain: It has been cited as falsifying evidence against the sam-
pling model that brain damage can lead to specific impair-
ments, whereas its conception on brain functioning determines
the bonds theory to predict general impairments. Again,
according to process overlap theory it is damage to the neural
substrate of overlapping executive process that is relevant in
predicting the generality of the impairment rather than the
total amount of damage.

There is a third criticism against the sampling model, which
is particularly informative in highlighting the difference
between Thomson’s account and process overlap theory:
“Some seemingly completely unrelated tests, such as visual and
memory scan tasks, are consistently highly correlated, whereas
related tests, such as forward and backward digit span, are only
modestly correlated” (van der Maas et al., 2006, p. 843.)

Because process overlap theory, as opposed to sampling,
does not propose additive processes, it does not predict a linear

relationship between the size of the correlation and the extent
of the overlap relative to the total number of activated pro-
cesses. Instead, it predicts that the size of the correlation will be
a function of the overlap of domain-general executive processes.
Therefore the third criticism is not relevant for process overlap
theory. In particular, whereas forward digit span measures only
the storage and retrieval of digits, backward digit span also taps
executive processes involved in fluid reasoning (Kovacs et al.,
2016). With regard to visual and memory scan tasks: They cor-
relate strongly exactly because both are good measures of the
executive component of working memory.

Anderson (2001) provided an account of the general factor
similar to the one provided by Thomson, but here the overlap
of elements takes place at the level of genes. He argued that any
cognitive task requires the coordinated functioning of distrib-
uted neurons, and because the development of these neurons
depends on a large number of genes, “any two cognitive tasks
of the type used for IQ tests will share some fraction of their
genetic determinants" (p. 368).

Assuming that each locus has an independent and equal
effect on behavioral variance, Anderson (2001) claimed that
the overlapping genetic components cause the positive mani-
fold: “Any two traits with shared components will have a
positive correlation" (p. 369). Indeed, this account is very
similar to the one proposed by Thomson, even to the equa-
tion predicting the size of the correlation based on the num-
ber of shared genes.9 Therefore, the reasons why process
overlap theory is more empirically plausible than the sam-
pling model are also relevant to Anderson’s account. More-
over, we disagree about the optimal level of explanation. It is
not genes but psychological processes that are involved in
cognitive behavior, hence we need an understanding of the
nature of psychological processes as a proximate cause for
the positive manifold.

The third theoretical account of the positive manifold that
we wish to discuss is the mutualism model, a developmental
account of the positive manifold that proposes positive recipro-
cal interactions between cognitive processes during develop-
ment (van der Maas et al., 2006). The model describes the
development of intelligence as the emergence of a complex
dynamical network through the mutually beneficial interaction
of modules or processes. According to this model, individual
differences in cognitive abilities are uncorrelated at the begin-
ning of development and start to correlate only because of such
interactions.

The mutualism model bears many similarities to process
overlap theory. It also explains g without postulating a single,
general ability; it also rejects the reflective interpretation of g;
and the explanation also relies on the interaction of separate
processes. At the same time, van der Maas and colleagues pro-
posed the functional independence of cognitive processes in
mental test performance in their model while arguing that the
positive manifold is the result of mutual interactions between
cognitive processes only during development. That is, whereas
in the mutualism model the interaction between processes takes
place during development only, process overlap theory claims

8This assumption by Thomson (1916) was, in fact, more practical than substantive:
“Note that I do not for one moment suggest that psychological ‘factors,’ if they
exist, can be added together like dice: I merely intend to apply Professor Spear-
man’s formulae to dice throwing” (p. 275). 9Even though the article does not refer to Thomson or to the concept of sampling.
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that such interaction takes place when people solve mental
tests.

The central assumption of the mutualism model is that
learning in one cognitive domain positively affects development
in other domains. In our opinion, even though the mathemati-
cal scaffolding of the mutualism model is greatly sophisticated
and appealing, this assumption may need further empirical
grounding. In particular, the strong cognitive transfer across
domains that it proposes seems somewhat implausible. Fur-
thermore, mutualism predicts that in adults, elementary cogni-
tive tasks will be correlated, and as we have seen, this is not the
case. Finally, combining evidence from psychometrics, experi-
mental cognitive psychology, and neuroscience, process overlap
theory is arguably based on more converging evidence.

On the other hand, because cognitive transfer probably
occurs more easily within than across domains, mutualism
appears as a very plausible explanation of how specific psycho-
logical processes get organized into clusters of abilities, repre-
sented by broad group factors—more so than of the
correlations between the group factors themselves or between
tests tapping different domains. Therefore, it might be possible
to reconcile the two accounts, as it is quite likely that some pro-
cesses indeed interact during development but not later in life,
whereas others interact during actual problem solving.

The final theoretical account of the positive manifold to dis-
cuss is Detterman’s (1987) system theory of intelligence. It
argues that human intelligence functions as a complex system
composed of smaller parts, and a global rating of cognitive
functioning, such as IQ, does not reflect its constituents. In his
conception of intelligence, Detterman borrowed two central
concepts from system theory: wholeness and centrality. Whole-
ness refers to the interrelatedness of different parts of the sys-
tem, and centrality means the extent to which a single part of
the system influences the operation of the entire system.

Detterman (1987) argued that “the amount of variance
accounted for by the first principal component is considered to
be a measure of system wholeness for the variables measured”
(p. 6). Therefore, the identification of individual components of
the system results in processes that do not correlate. Moreover,
according to Detterman, “a measure of wholeness, which I
regard the first principal component to be, says nothing about
centrality” (p. 7).

We completely subscribe to Detterman’s basic theoretical
approach and his conception of intelligence as a complex sys-
tem with many independent components. In fact, it is quite
easy to integrate the two theories. Employing his system termi-
nology, process overlap theory emphasizes the centrality of
executive processes rather than system wholeness as the main
reason for the emergence of the positive manifold. The empiri-
cal evidence points to such executive processes overlapping
with domain-specific ones in cognitive activity rather than to
every process being related to every other process, as would be
the case if intelligence were a system with very high wholeness.

Conclusion

Process overlap theory builds on available knowledge from psy-
chometrics, cognitive psychology, and neuroscience to explain
patterns of variation in mental abilities. As such, it is not a

taxonomy of human cognitive abilities and more than a latent
variable model: It is a theoretical account that specifies the
within-individual item response processes that are responsible
for the positive manifold in intelligence. Besides the positive
manifold, the theory explains a number of related phenomena:
factor differentiation, the decrease of across-domain variance
as a result of the Flynn effect, the identity or near-identity of Gf
and g from an individual differences perspective, and the worst
performance rule.

The theory proposes that the positive manifold, and thus g,
will emerge from a battery of tasks that tap various important
domain-general processes in an overlapping fashion. In partic-
ular, executive processes, seated primarily in the prefrontal and
partly in the parietal cortex, overlap more with domain-specific
processes in mental test performance than such specific pro-
cesses overlap with one another. To arrive at a correct answer
on a mental test item, one has to pass each tapped “dimension”;
therefore, individual differences in executive processes function
as a bottleneck for variation in specific processes. As a conse-
quence, complex tasks requiring substantial executive process-
ing, as well as errors in tasks requiring attention, are the most
indicative of the domain-generality of the positive manifold.

It is important to note that the prefrontal cortex is not the
seat of a unitary central executive, nor is executive function
unitary from a psychological point of view. Hence there need
not be a single psychological process tapped by all intelligence
tests to obtain the positive manifold. Instead, a set of executive
processes function as a “bridge” connecting more specialized
networks of cognitive processes. Accordingly, process overlap
theory’s interpretation of double dissociation results in the light
of the positive manifold is that cognition is not characterized by
independent encapsulated processes or “modules” but instead
by multiple sets of processes that are engaged in an overlapping
fashion by cognitive operations.

Process overlap theory does not question the existence of
psychometric g. In fact, it is not even logically possible to admit
the existence of the positive manifold but not of a general fac-
tor, because the latter is a necessary algebraic consequence of
the former. What is discarded is “psychological g”: the interpre-
tation of psychometric g as a psychological construct. There is
no psychological process that corresponds to psychometric g.
Instead, g is conceptualized as a formative variable: It emerges
because of the positive manifold rather than explaining it.

Thus, it is imperative not to interpret process overlap
theory as if it identified g with executive functions—with a
few possible mediators like fluid reasoning and working
memory. The theory indeed says that working memory and
fluid intelligence are hugely overlapping constructs and that
the overlap is caused by executive functions but g is not
interpreted as a psychological construct of any kind.
Instead, it is characterized as an emergent property, a result
of how processes overlap to produce cognitive activity
required by mental tests.

Also, even though our reading of the evidence is that such a
functional overlap can account for the bulk of the domain-gen-
eral variance that can be described with psychometric g, we are
ready to acknowledge that there might be other sources con-
tributing to the positive manifold. Mutualism is a likely candi-
date (see “Comparison with Other Theories”), and so is
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associative learning (e.g., Kaufman, DeYoung, Gray, Brown, &
Mackintosh, 2009).

Besides explaining a large number of empirical phenomena,
process overlap theory also makes a number of unique predic-
tions. First, if the theory is correct, differentiation should occur
in working memory as it occurs in intelligence. That is, correla-
tions between verbal and spatial working memory tasks should
be stronger below the population mean than above, and such
differentiation should be more characteristic of working mem-
ory than of short-term memory. Second, there is a controversy
surrounding age-differentiation, the assumption that the posi-
tive manifold is stronger in younger children. The available
results are inconclusive, largely because the batteries and age
groups are created in an arbitrary manner. Process overlap the-
ory predicts that age patterns of the maturation, as well as aging
of the prefrontal cortex and thus of executive processes, should
determine the domain-generality of the positive manifold.
However, this prediction might be difficult to test because dif-
ferent executive processes show different developmental and
aging patterns, and there is large individual variation in the
maturation and aging process itself.

Finally, process overlap theory and sampling provide differ-
ent predictions for neuroscience. Thomson postulated a large
number of domain-general bonds that are randomly sampled
by different cognitive demands, and the more bonds sampled
the higher they correlate with the general factor. Therefore,
according to original sampling models, g loadings should corre-
late with the number of activated clusters in the brain, regard-
less of their location. Process overlap theory, on the other
hand, predicts that g loading should be a function of the
involvement of particular areas of the brain rather than total
activation. We hope that the theory will inspire substantial
empirical research and data-driven development in the fasci-
nating field of human intelligence.
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